
printHED: The AI Poet
printDEK: “Deep-speare” crafted

Shakespearean verse that few read-
ers could distinguish from

By Jey Han Lau, Trevor Cohn, Tim-
othy Baldwin & Adam Hammond

by
JEY HAN LAU,
TREVOR COHN,

TIMOTHY
BALDWIN &

ADAM HAMMOND

“Deep-speare”
crafted

Shakespearean
verse that few readers

could distinguish
 from the
real thing

tH e A I

P o E t

R
K

M
M

B
P

EV
G

Z
AN

D
AS

(P
D

F)
EG (P

D
F)

ES
H

G
(P

D
F)

JK
M

EK
PE

R
SK

M
SA

C
TS

P
(P

D
F)

W
J

(P
D

F)
EA

B
(P

D
F)

SH (P
D

F)
JN

L
M

K

P
le

as
e

re
tu

rn
 to

:

by
P

R
O

O
F

1
 4

/2
/2

0
@

 4
:0

5
pm

 B
P

SPECTRUM.IEEE.ORG | MaR 2020 | 41

ILLUSTRATION BY Chad Hagen

tury, English poets developed a distinctive sonnet style using
a rhythm called iambic pentameter, where 10-syllable lines
have a regular unstressed-stressed rhythmic pattern. An
English sonnet typically consisted of three four-line stanzas
(called quatrains) that presented the “problem,” followed
by a two-line couplet, often with a rhyme scheme of ABAB
CDCD EFEF GG. Shakespeare made such frequent use of this
poetic form that today it’s called the Shakespearean sonnet.

In the Deep-speare project, we sought to produce individ-
ual quatrains from the problem section of Shakespearean
sonnets. We therefore focused on producing verses in iambic
pentameter with regular rhyme schemes, rather than trying
to replicate the full 14-line form of the sonnet or its two-part
argumentative structure. We’d like to work on that greater
challenge someday, but first we have to prove that our AI poet
has mastered individual quatrains.

Our system was powered by three components: a rhythm
model that learned iambic pentameter, a rhyme model that

Deep-speare’s creation is nonsensical when you read it
closely, but it certainly “scans well,” as an English teacher
would say—its rhythm, rhyme scheme, and the basic gram-
mar of its individual lines all seem fine at first glance. As our
research team discovered when we showed our AI’s poetry
to the world, that’s enough to fool quite a lot of people; most
readers couldn’t distinguish the AI-generated poetry from
human-written works.

Our team, composed of three machine-learning researchers
and one scholar of literature, trained our AI poet using about
2,700 sonnets taken from the online library Project Guten-
berg. Our “poet” learned how to compose poetry on its own,
using the AI approach known as deep learning—it cranked
through the poems in its training database, trying again and
again to create lines of poetry that matched the examples. We
didn’t give it rhyming dictionaries, pronunciation dictionar-
ies, or other resources, as has often been the case in previous
computer-generated poetry projects. Instead, Deep-speare
independently learned three sets of rules that pertain to son-
net writing: rhythm, rhyme scheme, and the fundamentals of
natural language (which words go together).

Our goal was to see how far we could push deep learning
for natural-language generation, and to make use of the inter-
esting qualities of poetry. Poetic forms such as sonnets have
fairly rigid patterns when it comes to rhyme and rhythm, and
we wondered if we could design the system’s architecture so
that Deep-speare would learn these patterns autonomously.

Our efforts fall within the booming research field of compu-
tational creativity. AI-generated paintings have been auctioned
off at Christie’s, a DeepBach program has composed con-

vincing music in the style of Bach, and
there has been work in other media such
as sculpture and choreography. In the
realm of language and literature, a text-
generating system called GPT-2 from the
research lab OpenAI proved able to gen-
erate fairly coherent paragraphs of text
based on a starter sentence.

These experiments in computational
creativity are enabled by the dramatic
advances in deep learning over the past
decade. Deep learning has several key
advantages for creative pursuits. For starters, it’s extremely
flexible, and it’s relatively easy to train deep-learning sys-
tems (which we call models) to take on a wide variety of tasks.
These models are also very good at discovering patterns and
generalizing from those patterns—sometimes with surprising
results, which can be interpreted as “accidental creativity.”
What’s more, the inherent element of randomness within
 deep-learning algorithms leads to variability in the models’
output. This variability lends itself well to creative applica-
tions, assuming the human collaborator has the patience to
sift through the different outputs. Finally, it’s relatively easy
to build models that work with different types of data, includ-
ing text, speech, images, and videos.

A SONNET IS CHIEFLY DISTINGUISHED by two features:
its 14-line length and its two-part “argument” structure, in
which the poem first describes a problem or lays out a ques-
tion and then offers a solution or resolution. In the 16th cen-

learned which words rhyme with each other, and
a language model that learned which words are
typically found together. The language model was
the main component that generated the sonnet,
word by word.

A language model judges which sentences are
valid within a language (in this case, English) by
ranking any arbitrary sentence with a probability
score. A properly trained language model will assign
fluent sentences higher probabilities and nonsen-
sical sentences lower probabilities. But consider
how language is both produced and interpreted:
sequentially, one word after another. This same
principle allows us to break down the very com-
plex problem of creating sentences into a series
of simpler problems involving words. A language
model’s job is to look at a partial sentence and pre-
dict what word will come next. To make this predic-
tion, it looks at all of the words it knows and gives
each possible next word an individual probability
score, which is contingent on the words that are
already in the sentence.

A language model learns these probabilities by
ingesting all the words and sentences in its training
corpus; researchers use Wikipedia entries, discus-
sions on Reddit, or databases specifically con-
structed for training natural-language-processing
systems. From that trove of text, the AI learns
which words are most often found together. In
the case of our Deep-speare project, the model
learned basic lessons about language from Project
 Gutenberg’s whole collection of poetry, and refined
its sonnet-writing abilities using roughly 2,700

Shakespearean sonnets in the online library, which contained
about 367,000 words.

The quality of a language model can be characterized by
measuring the amount of “surprise” upon observing the next
word. If it is assigned a high probability score, the word is
unsurprising; words with low probability scores are quite sur-
prising. This degree of surprise is used as a signal while train-
ing a language model from text. If the model is not surprised
by each successive word, as we progress one word at a time
through a large corpus of text, then the model can be consid-
ered to have captured much of the complexity of language. This
includes the existence of multiword units like “San Francisco”
that frequently co-occur, the rules of grammar and syntax that
govern sentence structure, and semantic information, such
as the fact that “coffee” tends to be “strong” or “weak,” but
rarely “powerful” or “lightweight.”

Once we had our trained language model, it could finish a
sentence or generate sentences entirely from scratch. It per-

Here’s a stanza from a sonnet written by William Shakespeare:

Shall I compare thee to a summer’s day?
Thou art more lovely and more temperate:
Rough winds do shake the darling buds of May,
And summer’s lease hath all too short a date...
And here’s one written by Deep-speare, an artificial-intelligence program that we trained to write sonnets:

Yet in a circle pallid as it flow,
by this bright sun, that with his light display,
roll’d from the sands, and half the buds of snow,
and calmly on him shall infold away

SPECTRUM.IEEE.ORG | May 2020 | 4342 | May 2020 | SPECTRUM.IEEE.ORG ILLUSTRATION BY Chad Hagen

From pardon to him, who will stand and wait
[(‘<unk>’, 0.6836248913716044),
(u’away’, 0.03349281459835753),
(u’name’, 0.011316342512655541),
(u’rest’, 0.00983612123034163),
(u’wait’, 0.004583748295)]

[(u’serve’, 0.3066745393962881),
(u’upon’, 0.22345730589824617),
(u’to’, 0.08877336095251111),
(u’on’, 0.05100599812608215),
(u’with’, 0.02633106366363138)]

[(u’,’, 0.7320859063260914),
(u’him’, 0.17812174644924428),
(‘<unk>’, 0.030553039528607696),
(u’;’, 0.016839762033584157),
(u’and’, 0.007472905710189633)]

[(u’only’, 0.45786649479239094),
(u’will’, 0.2201722105229963),
(u’to’, 0.19441820311859043),
(u’me’, 0.028782115633387933),
(u’who’, 0.013602668027207571)]

[(u’stand’, 0.914619154884835),
(u’,’, 0.04369762173509888),
(‘<unk>’, 0.024038303313654728),
(u’on’, 0.0028022023262098406),
(u’stay’, 0.0018117292914215876)]

[(u’to’, 0.5894361349827827),
(u’and’, 0.13171717794528967),
(‘<unk>’, 0.0353883991580653),
(u’will’, 0.033137707810545286),
(u’not’, 0.031553268552105544)]

[(‘<unk>’, 0.4424459879044676),
(u’pardon’, 0.1509547740665801),
(u’also’, 0.048712708567771525),
(u’listened’, 0.04067232023705305),
(u’answer’, 0.025621479882497737)]

[(u’to’, 0.23679561875684055),
(u’and’, 0.21545725556259004),
(u’give’, 0.0741685590691756),
(u’for’, 0.05821204019317471),
(u’from’, 0.035948693859604456)]

THE AI POET, Deep-speare, generates stanzas
that resemble pieces of Shakespearean sonnets,
which are characterized by certain rhyme
schemes and a rhythm of alternating stressed and
unstressed syllables known as iambic pentameter.
Deep-speare employs three natural-language-
processing models: One selects each word by
assessing word probability, a second checks the
rhythm of each line of poetry, and a third ensures
that each line adheres to the rhyme scheme.

To create a stanza, the AI chooses one of the
classic rhyme schemes at random. In this example,
it picks the “ABBA” scheme, which means the first
and last lines will rhyme and the two middle lines
will rhyme. It then begins to generate the poem in
a surprising way—beginning with the last word of
the last line and working backward, moving from
right to left to assemble each line.

Deep-speare begins by choosing the last
word of the last line (“wait”). It makes this

choice by considering all the words in the English
language and assessing each word’s probability
of appearing in that spot. You see here the top five
contenders and their probability rankings. The
model doesn’t choose the word with the highest
probability; instead it samples at random from the
candidate words. (Note: The symbol “<unk>” is a
stand-in for low-frequency or unseen words and
is never chosen.)

Working backward, the AI poet repeats
this selection process for each word

in the final line. The probability scores of the
candidate words begin to reflect how often
certain words appear next to each other or in the
same sentence.

Deep-speare generates many
candidate lines of poetry in

this way; then its rhythm model looks
at those candidates and assigns them
rhythm scores. From those candidates,
it samples a line that fits the iambic
pentameter scheme.

Working from bottom to top, the
AI repeats these steps with the
other lines of poetry.

When choosing words
to conclude the second and first
lines (“pray” and “state”), the rhyme
model gives the candidate words a

“rhymability” score, looking for words
that rhyme with “way” and “wait”.

1

1

2

2

LINE 4:
0 -1.24065 <eos> as thou, blessed poet! never called to sin
1 -1.200449 <eos> the chiefs, who bore his leader to the land
2 -0.4335279 <eos> if i their fellows may be chang’d to pass
3 -1.9045542 <eos> of all the dead, and sought him thus to heaven
4 -0.40149456 <eos> and tell them they, and with the dreadful will

5 -1.3813826 <eos> to tell this book, he would love’s company
6 -0.8074954 <eos> and all thy heart was ever clear and bright
7 -1.9163793 <eos> and more than ever in the bourne of pain
8 -1.2133341 <eos> one thing as it shall make on haste to be
9 -0.40153423 <eos> from pardon to him, who will stand and wait

3

3

4

SELECTED: -0.4355595 <eos>

Shall i behold him in his cloudy state

SELECTED: -0.0014888189 <eos>

A cry: if it will drag me, find no way

SELECTED: -0.0010855944 <eos>

For just but tempteth me to stop and pray (‘[rhmyability(‘, u’pray’, ‘,’,
u’way’, ‘) =’, 0.9971663, ‘]’)
(‘sampled word =’, u’pray’)

(‘[rhmyability(‘, u’state’, ‘,’,
u’wait’, ‘) =’, 0.910274, ‘]’)
(‘sampled word =’, u’state’)

4

5

5

The Poetic Process

formed either function by randomly choosing a word that had
a high probability score, adding it to the growing sentence,
and recomputing the probabilities of all the possible words
that could come next. By repeating this process, Deep-speare
generated its lines of poetry.

While Deep-speare’s language model was learning about word
probabilities from Project Gutenberg’s collection of sonnets, a
separate rhythm model was learning about iambic pentameter.
We told the rhythm model that each line was composed of 10
syllables in a stressed-unstressed pattern. The model looked at
the letters and punctuation within each line and determined
which characters corresponded to a syllable and which syllables
received the stress. For example, the word “summer” should
be understood as two syllables—the stressed “sum” and the
unstressed “mer.” When Deep-speare was writing its quatrains,
the language model generated candidate lines of poetry, from
which the rhythm model picked one that fit the iambic pen-
tameter pattern. Then the process repeated for the next line.

The rhyme model also learned its lessons from the collec-

tion of sonnets, but it looked only at the characters within the
final word of each line. During its training process, we told the
model that each sentence-ending word should rhyme with
one other word within the quatrain, and then we let it figure
out which of those words were most similar and thus most
likely to rhyme. To take the example of the Shakespeare son-
net quoted earlier, the rhyme model determined that “day”
and “May” had a high “rhymability” score, as did “temper-
ate” and “date.”

Once Deep-speare was trained and ready to compose, we
gave it three different rhyme templates to choose from: AABB,
ABBA, and the ABAB that’s most typical of Shakespearean son-
nets. During its writing process, Deep-speare first randomly
picked one of the templates. Then the language model pro-
ceeded to generate the lines of poetry, word by word; when it
reached a word that should rhyme, it offered candidate words
to the rhyme model.

Here are two examples of quatrains generated by Deep-
speare. The first shows a slightly trained model that’s beginning

to grasp the rhyme scheme but hasn’t yet found the rhythm,
and isn’t making much sense.

by complex grief’s petty nurse. had wise upon along
came all me’s beauty, except a nymph of song
to be in the prospect, he th of forms i join
and long in the hears and must can god to run

This second quatrain shows the progress made by a model
that has nearly finished its training. Its rhymes (in the ABBA
pattern) are correct, it nails the iambic pentameter, and its
language is not just coherent, it’s reasonably poetic!

shall i behold him in his cloudy state
for just but tempteth me to stop and pray
a cry: if it will drag me, find no way
from pardon to him, who will stand and wait

IN ASSESSING DEEP -SPEARE’S poetic output, we first

checked to be sure it wasn’t just copying sentences from its
training data. We found that the phrases in its generated poems
didn’t overlap much with phrases in the training data, so we
were confident that Deep-speare wasn’t merely memorizing
existing sonnets; it was creating original poems.

But an original sonnet isn’t necessarily a good sonnet. To
assess the quality of Deep-speare’s quatrains, we worked with
two types of human evaluators. The first judges were crowd-
workers employed through Amazon’s Mechanical Turk plat-
form who had a basic command of the English language but
no expertise in poetry. We presented them with a pair of son-
net quatrains, one composed by a human and the other gen-
erated by a machine, and asked them to guess which one was
written by a human.

We were greatly dismayed by the initial results. When we
first posted the task, the crowdworkers identified the human-
written sonnets with near-perfect accuracy. It seemed like the
end of the road for our research, as the results indicated that

[(u’who’, 0.2604828176825603),
(u’,’, 0.23431047965490306),
(u’he’, 0.18493742153926804),
(u’none’, 0.04686834738906903),
(u’i’, 0.03899769237163111)]

[(‘<unk>’, 0.6156633342333774),
(u’us’, 0.15918436494694252),
(u’him’, 0.10109006857994521),
(u’only’, 0.0161427589746743),
(u’me’, 0.014900756959726619)]

| CO NTI N U E D O N PAG E 52

SPECTRUM.IEEE.ORG | May 2020 | 4544 | May 2020 | SPECTRUM.IEEE.ORG

the machine-generated poems were clearly not up to standard.
Then we considered an alternative explanation for the near-

perfect accuracy: The crowdworkers had cheated. As our
human-written poems were taken from Project Gutenberg
(in which all text is indexed online and searchable), we won-
dered if the workers had copied the poems’ text and searched
for it online. We tested this ourselves, and it worked—the
human-written poem always returned some search results,
so achieving perfect accuracy on the guessing game was a
trivial accomplishment.

To discourage the crowdworkers from cheating, we con-
verted all the poems’ text into images, then put the task up
for evaluation again. Lo and behold, the workers’ accuracy
plunged from nearly 100 percent to about 50 percent, indicat-
ing that they could not reliably distinguish between human
poetry and machine poetry. Although the workers could still
cheat by manually typing the text of the poems into a Google
search bar, that procedure apparently required too much effort.

Our second evaluator was coauthor Adam Hammond, an
assistant professor of literature at the University of Toronto.
Unlike the crowdworker experiment, this evaluation did not
involve a guessing game. Instead, Hammond received a ran-

dom mix of human-written and machine-generated sonnets
and had to rate each poem on four attributes: rhyme, rhythm,
readability, and emotional impact.

Hammond gave Deep-speare’s quatrains very high marks
for rhyme and rhythm. In fact, they got higher ratings on
these attributes than the human-written sonnets. Hammond
wasn’t surprised by this result, explaining that human poets
often break rules to achieve certain effects. But in the read-
ability and emotional-impact categories, Hammond judged
the machine-generated sonnets to be markedly inferior. The
literature expert could easily tell which poems were gener-
ated by Deep-speare.

ONE OF THE MOST INTERESTING aspects of the project
was the response it elicited. Shortly after we presented our
paper at a 2018 conference on computational linguistics, news
outlets around the world picked up the story. Many articles
quoted the following quatrain as evidence of the humanlike
poetry Deep-speare was capable of producing:

With joyous gambols gay and still array,
no longer when he ’twas, while in his day
at first to pass in all delightful ways
around him, charming, and of all his days.

When Hammond was interviewed on BBC Radio, the presenter
read this same quatrain aloud and asked for an interpretation.

Hammond responded by asking the presenter if she had noticed
that the quatrain contained a glaring grammatical error: “he
’twas,” a contraction of the nonsense phrase “he it was.” The
presenter’s response indicated that she had not noticed.

Such willingness to look past obvious errors in order to
marvel at the wonders of AI, a phenomenon that the social
scientist Sherry Turkle names “the Eliza effect,” dates back
to the earliest experiments in text-based AI. At MIT in the
1960s, computer scientist Joseph Weizenbaum developed
Eliza, the first chatbot, which replicated the conversational
style of a psychotherapist. Although the program was quite
crude, and its limitations easy to expose, Weizenbaum was
shocked to discover how easily users were taken in by his
creation. Turkle, a colleague of Weizenbaum’s at MIT in the
1970s, noticed that even graduate students who understood
Eliza’s limitations nonetheless fed it questions it was able to
answer in a humanlike way.

The Eliza effect—which Turkle defines as “human complicity
in a digital fantasy”—seems to have been at work in the pub-
lic response to Deep-speare as well. The public so wanted the
quatrains to demonstrate the powers of AI that it looked past
evidence to the contrary.

Such willful misunderstandings of AI may be increasingly
problematic as Deep-speare’s capacities grow. We’re con-
tinuing with this research, and one of our goals is to improve
our AI poet’s scores on readability and emotional impact. To
improve overall coherence, one tactic may be to “pretrain”

the language model on a very large corpus of text, such as the
entirety of Wikipedia, to give it a better grasp of which words
are likely to appear together in a long narrative; then we could
take that general language model and give it special training
in the language of sonnets.

We’re also thinking about how human poets compose their
works: A poet doesn’t sit down at a desk and think, “Hmm,
what should my first word be?” and then, having made that
tough decision, contemplate the second word. Instead, the
poet has a theme or narrative in mind, and then searches for
the words to express that idea. We’ve already taken a step in
that direction by giving Deep-speare the ability to generate a
poem based on a specific topic, such as love or loss. Sticking
to one topic may increase the coherence and continuity of the
quatrain; the model’s word choices will be constrained because
it will have learned which words fit with a given theme. We’re
also planning experiments with a more hierarchical language
model that first generates a high-level narrative for the poem,
and then uses that framework to generate the individual words.

It’s an ambitious goal, to be sure. We hope that Deep-speare
will measure up, if not to Shakespeare then to a character
described in one of Shakespeare’s poems:

He had the dialect and different skill,
Catching all passions in his craft of will.

THE AI POET
CO NTI N U E D F RO M PAG E 4 5

POST YOUR COMMENTS AT spectrum.ieee.org/chenminghu-may2020

PHOTOGRAPH BY Firstname Lastname SPECTRUM.IEEE.ORG | May 2020 | 5352 | May 2020 | SPECTRUM.IEEE.ORG

G
U

TT
ER

 C
R

ED
IT

 G
O

ES
 H

ER
E

