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Abstract

We present COVID-SEE, a system for medi-
cal literature discovery based on the concept
of information exploration, which builds on
several distinct text analysis and natural lan-
guage processing methods to structure and or-
ganise information in publications, and aug-
ments search by providing a visual overview
supporting exploration of a collection to iden-
tify key articles of interest. We developed this
system over COVID-19 literature to help med-
ical professionals and researchers explore the
literature evidence, and improve findability of
relevant information. COVID-SEE is available
at covid-see.cis.unimelb.edu.au.

1 Introduction

The outbreak of Coronavirus disease 2019
(COVID-19) has led to a rapid and proactive re-
sponse from medical and AI communities world-
wide. In information retrieval and natural language
processing, efforts have concentrated on building
datasets and tools for efficiently managing the
growing literature on COVID-19, historical coron-
aviruses, and other related diseases (Hutson, 2020).
One of the main stimuli for the creation of new tech-
nology was the release of the COVID-19 Open Re-
search Dataset (CORD-19) (Wang et al., 2020), a
regularly updated collection of coronavirus-related
publications and preprints. But while many tools
have emerged for the purposes of article retrieval
and question answering,1 relatively less work has
been devoted to designing systems that go beyond
returning a list of (relevant) documents, and that
attempt to leverage domain knowledge to organise
and present information found within the literature.
With our work, we aim to fill this gap by making
available a web application that combines a search
1 A non-exhaustive list: cord19.vespa.ai, discovid.ai, covidex.ai, cord19.aws,

covid19.mendel.ai, covidscholar.org, covidseer.ist.psu.edu, covidask.korea.ac.kr,

covid19-research-explorer.appspot.com.

engine for COVID-19-related literature with differ-
ent visualisation techniques, that make it easy to
see and explore salient topics, concepts and concept
relations in the documents.

We build on observations about the relevance
of exploratory search, and the need to combine
learning and investigation with direct retrieval for
information seeking (Marchionini, 2006), specifi-
cally designing a tool to support the health infor-
mation seeking behaviour observed by Pang et al.
(2015) of alternating between exploratory and fo-
cused search. We further draw on the insights from
research in information visualisation that demon-
strate the value of multiple coordinated views of
documents, with a specific emphasis on visually
illustrating connections between entities (Stasko
et al., 2008; Görg et al., 2010).

We designed our tool to support medical experts
and other researchers by way of literature discovery.
A typical usage scenario in COVID-SEE begins
with a textual query over CORD-19, providing the
researcher with: (i) a list of retrieved documents,
and (ii) a visualisation dashboard. The user can
then select the documents of interest and save them
into a briefcase for later use. Once the user has
populated the briefcase with relevant articles, it is
possible to set the briefcase as the current active
collection, and further explore those articles.

In both the retrieval and visualisation compo-
nents, we adopt several well-established NLP tech-
niques. Article retrieval is powered by an exist-
ing neural search engine specifically developed for
the CORD-19 dataset (Zhang et al., 2020). The
results are shown as a list of document hits with
metadata about the articles. Separately, the dash-
board represents the current active collection with
three distinct interactive views. The first is a rela-
tional concept view in which we employ Sankey
diagrams to organise the medical concepts found in
the articles according to broad, clinically-relevant

http://covid-see.cis.unimelb.edu.au/
http://cord19.vespa.ai
http://discovid.ai
http://covidex.ai
http://cord19.aws
http://covid19.mendel.ai
http://covidscholar.org
http://covidseer.ist.psu.edu
http://covidask.korea.ac.kr
http://covid19-research-explorer.appspot.com
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Figure 1: Sankey diagram of PICO concepts and relations for 58 articles retrieved for the query incubation period
of COVID-19. Links between concepts can be selected to reveal papers that contain those relations. (See Fig. 2)

Figure 2: Selection of an Intervention-Outcome link re-
veals a paper containing the specific concept relations.

PICO categories (Richardson et al., 1995), such
as population, intervention and outcome. In this
view, more salient relations carry more weight, and
once a relation is clicked, the corresponding arti-
cles are revealed. We use an example based on the
query incubation period of COVID-19 to illustrate
this functionality (Fig. 1). The second, topic view
(Fig. 3), is more thematic and shows representative
topics for the current collection. For this compo-
nent, we trained a global topic model on medical
concepts extracted from CORD-19. Our third com-
ponent is a concept cloud view (Fig. 4), showing
the most salient concepts for each active document.

2 Data

CORD-19 is currently the most extensive coron-
avirus literature corpus publicly available (Wang
et al., 2020). The dataset contains all COVID-

19 and coronavirus-related research (e.g. SARS,
MERS, etc.) from different sources, including
PubMed’s PMC open access corpus, research arti-
cles from a corpus maintained by the WHO, and
bioRxiv and medRxiv pre-prints. The corpus is
updated daily and consisted of more than 130,000
documents as of 6 June. Together with the release
of the CORD dataset, a Kaggle challenge2 took
place in which we also participated.

3 System overview

3.1 Information retrieval
After submitting a query, a list of retrieved doc-
uments is shown. Each document entry can be
expanded to display the entirety of the abstract as
well as metadata (authors, journal, source, year, li-
cense). The user can also filter by criteria such as
year and source. Articles can be selected and added
to the user’s briefcase. This briefcase represents the
set of documents that the user wishes to keep track
of, and can be visualised, versioned, and exported.

We make use of an existing information re-
trieval system for the CORD-19 dataset, available
at covidex.ai (Zhang et al., 2020). This provides
us with a well-performing retrieval system—by
our analysis, in the top 30% of submissions to the
TREC-COVID shared task (Roberts et al., 2020).
2

kaggle.com/allen-institute-for-ai/CORD-19-research-challenge

https://covidex.ai/
https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge
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Figure 3: Topic visualisation for the 58 articles related to the query incubation period of COVID-19.

Figure 4: Concept cloud view of a single document.

3.2 Relational concept view

Given a collection of retrieved documents, the user
can directly proceed to the dashboard to explore
the collection. A key view over the collection is
via a Sankey diagram frame, which organises the
identified medical concepts into PICO categories
(Population, Intervention/Comparator, Outcome),
and shows how they interact. The diagram displays
relations between pairs of medical concepts, where
the strength of a relation corresponds to the number
of supporting abstracts in which that concept pair
is attested. To obtain the PICO concepts, we follow
a two-step procedure, as described below.

PICO span identification We train a BiLSTM-
CRF model (Lample et al., 2016) on the EBM-NLP

P R F1

All 0.73 0.65 0.69
Population 0.78 0.79 0.78

Intervention 0.57 0.64 0.60
Outcome 0.80 0.58 0.67

Table 1: PICO labelling results on EBM-NLP.

dataset (Nye et al., 2018), which contains ∼5,000
MEDLINE3 abstracts of reports of randomised clin-
ical trials annotated with textual spans that describe
the PICO elements. As pretrained word represen-
tations for the model, we use 200-dimensional
word2vec embeddings induced on PubMed ab-
stracts and MEDLINE articles (Hakala et al., 2016).
We observe a micro-averaged F1 score of 0.69 on
the EBM-NLP test set, and report the full results
in Table 1; these are comparable to those reported
in Nye et al. (2018). For our purposes, getting the
textual span exactly correct is less important, as
our final representations are not the snippets but
the medical concepts that occur inside them. The
PICO identification step is applied to all abstracts
of the CORD-19 dataset.

3
www.nlm.nih.gov/bsd/pmresources.html

https://www.nlm.nih.gov/bsd/pmresources.html
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PICO snippet PICO category MeSH terms

patients presenting with RTI Population Patients; Respiratory Tract Infections
Mass vaccination campaigns with par-
enteral vaccines

Intervention Immunization Programs; Vaccines; Parenteral
Nutrition; Macrophage Activation Syndrome

cumulative COVID-19-related hospital-
ization and death rates

Outcome Hospitalization; Mortality

Table 2: Examples of extracted PICO textual spans and MeSH terms found in them. The PICO concepts we use
are the MeSH terms, typed by their respective PICO category (e.g. Vaccines+Intervention).

Recognition of PICO concepts In this step, we
recognise medical concepts that occur within the
identified PICO spans. This is part of a larger
concept recognition procedure that we describe
in more detail in Section 3.3. Here, we take the
terms corresponding to Medical Subject Headings
(MeSH),4 which is a structured vocabulary main-
tained by the National Library of Medicine. We
use MeSH due to its transparent hierarchical struc-
ture, making it easy to control term granularity.
Additionally, it is also an established way to rep-
resent keywords found in medical articles indexed
by PubMed. A few examples of extracted PICO
concepts are shown in Table 2.

Establishing relations The output of the previ-
ous two steps is the extracted MeSH terms for
each article, typed by their respective PICO cat-
egory. In the Sankey diagram, we then display pair-
wise relations between Population–Intervention
and Intervention–Outcome concepts. Two concepts
are related when they are found in the same abstract.
We also include the strength of the connection, cor-
responding to the absolute frequency of that con-
cept pair in the entire dataset. The user can select
a concept relation link of interest, browse the rele-
vant articles containing that relation, and save them
to the briefcase for further exploration.

The rendering of the diagram is dynamic. This
means that whenever a document collection se-
lected by the user changes, the diagram is updated.
In addition, the Sankey view is interactive, allow-
ing the user to click on any relation to highlight the
relevant part of the diagram and show the support-
ing documents. A planned future release of our tool
will support semantic search, which will enable the
use of PICO-typed MeSH terms as search criteria.

3.3 Medical concept recognition
To allow for more conceptual representation of
the documents, we transform them into an un-
ordered set of Unified Medical Language System
4

ncbi.nlm.nih.gov/mesh

(UMLS: Lindberg et al. (1993)) concepts. These
concepts are extracted using MetaMap5 from the
document’s abstract, or, if it is absent, from the
first two paragraphs. This choice of representa-
tion is motivated as follows: (1) it avoids splitting
multi-word concepts (such as degenerative disease
of the central nervous system) into less meaning-
ful units (of , the, central, etc.), as would happen
in the case of token-based representation; and (2)
it maps different lexico-grammatical variations of
a given term into a single concept, thus reducing
noise in the data, and highlighting important key-
words. For example, concept C0000731 occurs
in the articles as abdominal distension, abdominal
distention, bloating, distended abdomens, swelling
of abdomen, etc., which would not be captured by
typical approaches to text normalisation such as
lemmatisation, stemming, or n-gram overlap. We
represent each MetaMap-disambiguated concept
by the lexicalisation that occurs most frequently
in the document collection, as distinct from the
MetaMap “preferred term”, which is often a techni-
cal description rather than its lexical form (e.g. we
use colon instead of preferred term Colon structure
(body structure)). As the last step, we remove stop-
words based on PubMed’s stopword list6 and the
100 most frequent tokens in the dataset. The result-
ing representation (Table 3) forms the foundation
of the remaining analysis and visualisations.

3.4 Topic view
To enable document exploration based on common
semantic themes, we provide a topic modelling
view. We use latent Dirichlet allocation (LDA)
(Blei et al., 2003) to learn topics over the whole
dataset, and represent the topic mixtures for a given
subset of articles (based on the briefcase) as a 2-
dimensional map using principal component anal-
ysis (PCA) via the pyLDAvis package.7 LDA rep-
resents each document as a mixture of topics, and
each topic as a mixture of words. We choose the
5

metamap.nlm.nih.gov
6

ncbi.nlm.nih.gov/books/NBK3827/table/

pubmedhelp.T.stopwords/
7

pypi.org/project/pyLDAvis

https://www.ncbi.nlm.nih.gov/mesh
http://metamap.nlm.nih.gov
https://www.ncbi.nlm.nih.gov/books/NBK3827/table/pubmedhelp.T.stopwords/
https://www.ncbi.nlm.nih.gov/books/NBK3827/table/pubmedhelp.T.stopwords/
https://pypi.org/project/pyLDAvis/


5

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

EMNLP 2020 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

Ab-
stract

porcine deltacoronavirus (pdcov) causes severe diarrhea and vomiting in affected piglets. the aim of this study was
to establish the basic, in vitro characteristics of the life cycle such as replication kinetics, cellular ultrastructure,
virion morphology, and induction of autophagy of pdcov.

Con-
cept
IDs

C4038448 C1314792 C1443924 C0042963 C0392760 C2948600 C0557651 C0040363 C0443211 C1527178
C2827718 C1521970 C0023675 C0598312 C0022702 C0007634 C0041623 C0042760 C0332437 C0857127
C0004391

Con-
cepts

porcine deltacoronavirus, causes, severe diarrhea, vomiting, affected, aim, study, to, establish, based, in vitro,
characteristics, life cycle, replication, kinetics, cells, ultrastructural, virion, morphology, induction, autophagy

Final
terms

porcine deltacoronavirus, causes, severe diarrhea, vomiting, affected, aim, establish, in vitro, characteristics, life
cycle, replication, kinetics, ultrastructural, virion, morphology, induction, autophagy

Table 3: Text representation steps

optimal number of topics (20) based on the Cv

topic coherence measure (Röder et al., 2015). Af-
ter learning the topic distribution for the whole
dataset, we display only those topics which are
representative of the selected subset, that is, ones
for which the average weight across the selected
documents is over a threshold t, which we set to
0.05. Thus, the topic selection is dynamic for each
set of selected documents.

3.5 Concept cloud view

For each of the documents in the user’s briefcase,
we display a wordcloud8 containing the 20 most
representative concepts. We regard each of the ar-
ticles in the briefcase as a target corpus, and the
remainder of the articles in the briefcase as a back-
ground corpus, and compare concept distributions
using the log-likehood test (Rayson and Garside,
2000). This highlights concepts that differentiate
a particular document from others in the briefcase,
even if they discuss similar topics and have the
same set of frequent terms. For instance, if the
briefcase contains articles regarding mechanical
ventilation and we choose one of them,9 the top
10 concepts chosen by log-likelihood will be sim-
ilar to 10 most frequent concepts, but with two
visible differences (Table 4): the log-likelihood
results do not contain common terms as mechan-
ical ventilation, frequently used in all documents
in the briefcase; on the other hand, they include
more document-specific concepts as ai (avian in-
fluenza)). Table 4 also shows how operating at the
concept level captures multi-word terms such as
mechanical ventilation and admitted to intensive
care unit.

8
github.com/chrisrzhou/react-wordcloud

9
pubmed.ncbi.nlm.nih.gov/18440440

3.6 Technical details
All data is stored in a graph database (neo4j10). The
front-end of our web application interacts with the
database via the Cypher language and the py2neo11

library. The website was built with React12 and
Flask13, and topic visualisations are supported by
pyLDAVis14. Core analysis was done in Python.

4 Related work

In the first months of the COVID-19 crisis, many
tools were released to support literature exploration.
We present here the systems that, like ours, focus
on the visualisation of concepts and relations for
retrieved documents, or that use concept informa-
tion to guide search. We provide a summary of the
existing tools and their functionalities in Table 5.

AllenAI’s SciSight Faceted Search (Hope et al.,
2020)15 is a tool for exploring how authors and
topics interact over time. The user can select the
desired topics from different PICO-like categories,
which act as a filter for the shown articles. It also
provides a co-mentions view with chord diagrams,
which displays associations between diseases and
chemicals, or between proteins, genes and cells.
This is conceptually similar to our goal of repre-
senting concept relations, but their diagram view
does not support PICO.

The identification of PICO elements in SciSight
is based on DOC Search,16, where a user con-
structs a query by accepting auto-suggestions based
on an ontology. The selected terms can be com-
bined with a variety of Boolean and ontological
operators. The user can then use the data visuali-
sations to further narrow down the search results.
DOC Search represents the document collection
with different views, but does not display topics
10

neo4j.com
11

py2neo.org
12

reactjs.org
13

flask.palletsprojects.com
14

github.com/bmabey/pyLDAvis
15

scisight.apps.allenai.org
16

covid-search.doctorevidence.com

https://github.com/chrisrzhou/react-wordcloud
https://pubmed.ncbi.nlm.nih.gov/18440440/
https://neo4j.com/
http://py2neo.org/
https://reactjs.org/
https://flask.palletsprojects.com/
https://github.com/bmabey/pyLDAvis
https://scisight.apps.allenai.org/
https://covid-search.doctorevidence.com/
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Concepts Tokens

Fre-
quent

sars-cov, airborne, mechanical ventilation, people, countries,
killed, required, medical, community, threat

mechanical, airborne, ventilation, respiratory, peo-
ple, countries, killed, required, intensive, care

Log-
likelihood

epidemic, sars-cov, airborne, people, killed, community,
threat, ai, countries, required, admitted to intensive care unit

airborne, people, killed, infectious, diseases,
caused, community, ai, will, countries

Table 4: Representative concepts vs. tokens

or relations between PICO concepts, and does not
support natural language queries. That said, DOC
Search is a powerful tool for navigating biomedical
research publications.

IBM COVID-19 Navigator17 is similar in func-
tionality to DOC Search. The tool fully embraces
the use of the UMLS knowledge graph to support
semantic search, with Boolean search operators and
UMLS semantic relationships. It does not provide
PICO or visualisation functionality.

COVID-19 LOVE18 from the Epistemonikos
project organises the literature according to study
type (systematic reviews, broad syntheses, primary
studies), as well as PICO categories and question
types (e.g. diagnosis, prognosis), but is not based
on automatic analysis or on the CORD collection,
and does not provide visual exploration.

Trialstreamer (Nye et al., 2020) finds and sum-
marises new clinical trial publications, registra-
tions, and preprints in both COVID-19-related and
broader literature. PICO snippets of text are shown,
together with the key findings and an indication of
the risk of bias. Evidence maps link interventions
to outcomes, and predict a trial’s findings.

Other systems include: NIH’s LitCovid (Chen
et al., 2020)19, which provides—based on human
verification—categorisation of papers according
to diagnosis, treatment, etc.; WellAI’s tool20 for
concept search, enabling retrieval of documents
via highly associated concepts; SemViz (Tu et al.,
2020), using a knowledge graph from Blender
Lab21 to create interaction plots and word clouds
for chemicals, genes and diseases; and COVID
Intelligent Search22, which offers filters for var-
ious medical categories (e.g. drugs, indication),
and suggests textual extracts as queries. Le Bras
et al. (2020) present work on coarse-to-fine ex-
ploration of literature based on hierarchical topic
models, however not visualisation of arbitrary sets
of articles. Ahamed and Samad (2020) construct
17

covid-19-navigator.mybluemix.net
18

app.iloveevidence.com/loves/5e6fdb9669c00e4ac072701d
19

ncbi.nlm.nih.gov/research/coronavirus
20

wellai.health/covid
21

blender.cs.illinois.edu/covid19
22

covidsearch.sinequa.com
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Search:
NL/IR 3 7 3 7 3 7 7 3 7 7 3
Concepts 3 3 3 3 3 3 3 3 3 3 3
PICO 3 3 3 7 7 7 7 7 7 3 3

Visualisation:
Concepts 3 ? ? 7 7 3 7 7 7 7 ?
Relations 3 3 7 7 7 3 7 7 7 7 7
Topics 3 7 7 7 7 7 7 7 ? 7 7

Table 5: Comparison with related systems.

a graph from entity co-occurrences that enables
centrality-based ranking of drugs, pathogens and
biomolecules.

5 Limitations and future work

COVID-SEE has been designed to facilitate more
interactive exploration of the COVID-19 literature,
through integration of sub-collection thematic anal-
ysis, document-level visual concept summaries,
and PICO-structured concept relations. It does
not currently support semantic search based on
PICO-style queries; a natural extension would be
to add this functionality utilising the PICO and
UMLS concept pre-processing. A recommenda-
tion system for articles which have similar topic
distributions could be added. In terms of visual rep-
resentations, we will experiment with expanding
beyond the MeSH term vocabulary to include more
specific terminology, and use of the hierarchical
relationships that exist between terms. Finally, we
are planning a user study with medical profession-
als to evaluate the potential of COVID-SEE as a
knowledge discovery tool.

6 Screencast

The screencast can be viewed at
https://youtu.be/vLtXuTz − LU .

https://covid-19-navigator.mybluemix.net/
https://app.iloveevidence.com/loves/5e6fdb9669c00e4ac072701d?utm=aile
https://www.ncbi.nlm.nih.gov/research/coronavirus/
https://wellai.health/covid/
http://blender.cs.illinois.edu/covid19/
https://covidsearch.sinequa.com/
https://youtu.be/vL_tXuTz-LU
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