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Community-based Question Answering (CQA) websites are attracting increasing numbers of users and con-
tributors in recent years. However, duplicate questions frequently occur in CQA websites and are currently
manually identified by the moderators. Automatic duplicate detection, on one hand, alleviates this laborious
effort for moderators before taking close actions, and, on the other hand, helps question issuers quickly find
answers. A number of studies have looked into related problems, but very limited works target Duplicate
Detection in Programming CQA (PCQA), a branch of CQA that is dedicated to programmers. Existing works
framed the task as a supervised learning problem on the question pairs and relied on only textual features.
Moreover, the issue of selecting candidate duplicates from large volumes of historical questions is often un-
addressed. To tackle these issues, we model duplicate detection as a two-stage “ranking-classification” prob-
lem over question pairs. In the first stage, we rank the historical questions according to their similarities to
the newly issued question and select the top ranked ones as candidates to reduce the search space. In the
second stage, we develop novel features that capture both textual similarity and latent semantics on question
pairs, leveraging techniques in deep learning and information retrieval literature. Experiments on real-world
questions about multiple programming languages demonstrate that our method works very well; in some
cases, up to 25% improvement compared to the state-of-the-art benchmarks.

CCS Concepts: • Information systems → Near-duplicate and plagiarism detection; Question answer-

ing; Association rules;

Additional Key Words and Phrases: Community-based question answering, question quality, classification,
latent semantics, association rules

ACM Reference format:

Wei Emma Zhang, Quan Z. Sheng, Jey Han Lau, Ermyas Abebe, and Wenjie Ruan. 2018. Duplicate Detection in
Programming Question Answering Communities. ACM Trans. Internet Technol. 18, 3, Article 37 (April 2018),
21 pages.
https://doi.org/10.1145/3169795

Q. Z. Sheng’s work has been partially supported by Australian Research Council (ARC) Future Fellowship Grant
FT140101247.
Authors’ addresses: W. E. Zhang and Q. Z. Sheng, Department of Computing, Macquarie University, NSW 2109, Australia;
emails: {w.zhang, michael.sheng}@mq.edu.au; J. H. Lau, Department of Computing and Information Systems, The Univer-
sity of Melbourne and IBM Research Australia, VIC 3010 Australia; email: jeyhan.lau@gmail.com; E. Abebe, IBM Research
Australia, 204 Lygon Street, VIC 3053, Australia; email: etabebe@au1.ibm.com; W. J. Ruan, Department of Computer Sci-
ence, University of Oxford, Parks Road, Oxford, OX1 3QD, UK; email: wenjie.ruan@cs.ox.ac.uk.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 ACM 1533-5399/2018/04-ART37 $15.00
https://doi.org/10.1145/3169795

ACM Transactions on Internet Technology, Vol. 18, No. 3, Article 37. Publication date: April 2018.

https://doi.org/10.1145/3169795
mailto:permissions@acm.org
https://doi.org/10.1145/3169795


37:2 W. E. Zhang et al.

1 INTRODUCTION

There has been an increase in the popularity of Community-based Question Answering (CQA)
websites such as Quora1, Yahoo! Answers,2 and Stack Exchange3 on the Internet. The reason is
that CQA websites are becoming a promising alternative to traditional web search to provide an-
swers that are subjective, open-ended, and with expert opinions. To cater to the multitude of in-
terests in its community, many CQA websites hold a set of subforums that focus on a particular
topic or theme. For example, Stack Exchange4 spans different themes like Science (“Mathemat-
ics,” “Physics”), Life (“Home Improvement,” “Travel”) and Technology (“Stack Overflow,” “Ask
Ubuntu”).

Stack Overflow, a Programming Community-based Question Answering (PCQA) site, is a
sub-domain in Stack Exchange created for programming-related questions. Despite detailed
guidelines on posting ethics, a large number of created questions are poor in quality [13].
Duplicate questions—questions that were previously created and answered—are a frequent
occurrence even though users are reminded to search the forum before creating a new post. To
reduce the number of duplicate questions, Stack Overflow encourages reputable users to manually
mark duplicate questions. Figure 1 illustrates the Stack Overflow workflow for marking duplicate
questions, where enough votes from reputable users are required. This approach is laborious,
but, more seriously, a large number of duplicate questions remain undetected for long time. As
reported in Ahasanuzzaman et al. [1], more than 65% of duplicate questions take at least one
day to be closed, and a large proportion of duplicate questions are closed more than one year
later. Therefore, a high-quality automatic duplicate detection system is required to considerably
improve user experience: For inexperienced users creating a new question, it can suggest a related
post before posting and possibly retrieve answers immediately; for experienced users, it can
suggest potential duplicate posts for manual verification.

Very limited studies have explored question duplication for the PCQA domain [1, 43]. The ex-
isting works adopted the duplicate mining (or similar tasks) methods from the CQA domain that
framed the task as a classification or prediction task and relied on a number of extracted features to
train a model [8, 9, 33, 37, 38, 44]. They differed from the CQA methods in extracting additional or
different features. However, two main issues exist in these methods. First, as PCQA questions of-
ten contain source code from programming languages which are linguistically very different from
natural languages, features that only consider the natural language text in these methods may
miss important indicator features of PCQA questions. In addition, they consider only syntactical
and lexical features that are not necessarily able to reveal the latent semantics of questions. Sec-
ond, as the number of questions posted on PCQA websites increases dramatically, rendering the
identification of possible duplicate questions from large volume of historical questions becomes
a tedious task. To the best of our knowledge, only one work [1] very briefly addressed this issue
by directly applying one candidate selection method. No existing work used different methods to
perform candidate selection and provide performance comparisons.

In this article, we seek to improve on the benchmark performance by developing a two-stage
“ranking-classification” detection method that addresses the just-discussed issues. Before starting
the detection process, our methodology performs preprocessing tailored to the programming-
related questions and aiming to maximally obtain information from questions. In the first stage
of duplicate detection, our methodology selects candidate duplicates given a new question by

1https://www.quora.com/.
2https://answers.yahoo.com/.
3http://stackexchange.com/.
4https://stackexchange.com/.
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Fig. 1. Stack overflow duplicate detection workflow.

ranking all historical questions and selecting the top ranked ones. In addition to using tags to
prune the questions in different domains, we propose to adopt three empirically effective ranking
algorithms to rank all the historical questions according to their similarities to the new question.
The three algorithms are query likelihood using language models with Jelinek-Mercer smoothing
(LMJM) [21], query likelihood using language models with Bayesian smoothing; and adopting
Dirichlet priors (LMDIR) [40] and BM25 [32]. Last, we develop a ranking algorithm based on the
topical similarities learned from the topic model. It is worth noting that the ranking within the
candidates does not matter as we only examine whether the possible duplicates are selected.

The second stage of our methodology is about detecting duplicate questions from the selected
candidates. The method follows the same approach from previous works by framing the duplica-
tion detection task as a supervised classification problem. Henceforth, we refer to our system as
DupDetector. Given a newly issued question, DupDetector pairs the question with each of the
candidate questions. Then it employs classification models to predict whether the question pair
is duplicate (positive) or nonduplicate (negative). To train the classifiers, DupDetector generates
three types of features for each question pair. The vector similarity feature represents questions as
continuous vectors in a high-dimensional space by adopting doc2vec [24]. This feature effectively
captures the semantics of questions. The relevance feature adapts the query-document relevance
measurements used in our ranking stage. Except for the introduced LMJM, LMDRI, and BM25, we
also adapt Divergence from Randomness Similarity (DFRS) [3] and Information-Based Similarity
(IBS) [11]. An association feature is generated on mined association phrases (i.e., pairs of phrases
that co-occur frequently in known duplicate questions) and lexical features. The idea of using as-
sociation phrases is adopted from ranking generated queries in curated Knowledge Base Question
Answering (KBQA) [5] and measuring the quality of question paraphrases in open KBQA [39].

To summarize, the main contributions of this article are:

(1) Candidate selection before duplicate detection: We select candidate duplicate
questions from historical questions by ranking them by their relevance to the newly
posted question before performing duplicate detection. This step reduces the search
space of the possible duplicate questions and is beneficial especially when encountering
a large corpus of historical questions.

(2) Novel features for duplicate question detection: We develop three categories of
novel features that consider both textual (association feature, relevance feature) and
latent (vector similarity feature) information to facilitate duplicate question detection.

(3) Association pairs for PCQA: We mine more than 130K association pairs from known
duplicate questions in Stack Overflow. The data contain phrase pairs that frequently
occur in duplicate question pairs and are domain-specific to PCQA.

ACM Transactions on Internet Technology, Vol. 18, No. 3, Article 37. Publication date: April 2018.
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(4) Extensive experimental evaluation: We provide extensive analysis on the behavior of
different features independently and the effectiveness of their combinations in duplicate
detection. We compare the impact of candidate selection methods. Results on a real-world
dataset suggest that DupDetector outperforms state-of-the-art benchmark by 4% to 25%
in terms of recall for duplicate detection on various programming languages.

This article substantially improves our previous work presented at the WWW conference in
2017 [42]. First, we add the candidate selection stage to reduce the search space of duplicate
questions and frame the detection problem as a two-stage task. Second, we develop new asso-
ciation and relevance features to replace the topical feature and association score feature and
improve the vector similarity feature proposed in Zhang et al. [42]. Third, we perform much more
extensive experiments on both classification performance evaluation and the performance of the
DupDetector system.

The rest of the article is organized as follows. In Section 2, we overview our system
DupDetector, followed by the technical details of the two stages in Section 3 and Section 4. We
report experimental results in Section 5. In Section 6, we review the related works. Finally, we
conclude and discuss some future research directions in Section 7.

2 OVERVIEW OF THE DUPDETECTOR SYSTEM

In this section, we overview our system DupDetector, which detects duplicate questions by fram-
ing the task as a two-stage “ranking-classification” problem. The technical details of the two stages
are given in separate sections (Section 3 and Section 4).

To identify whether a new question has duplicates in existing questions, DupDetector first se-
lects questions that could be potential duplicates, then pairs the selected questions to the new
question and performs classification on question pairs. Specifically, a ranking-based candidate se-
lection is performed which selects potential duplicate questions from the existing questions given
a newly issued question. The intuition of this component is to reduce the search space for potential
duplicates because constructing features (to be used in classification) for the new question with
each of the historical questions is a time-consuming task. We will further discuss our proposed
candidate selection methods in Section 3.

After obtaining the selected candidates, DupDetector pairs these candidates to the new ques-
tion and then extracts features from the question pairs. The classifier is trained using features
extracted from existing labeled duplicates and corresponding nonduplicate question pairs; these
question pairs are considered as ground truth. The training process is not activated each time a
new question is issued, but performs periodically and independently of the detection process to
reflect the new questions and update features. Then, for the question pairs constructed by the se-
lected candidates and newly issued question, DupDetector fits the features extracted from these
pairs into the trained classifier to perform classification. All the predicted duplicate questions are
listed if multiple duplicates exist. If no duplicates are found, the question will be posted to PCQA
communities as a normal post. As feature modeling is a key component in classification that largely
affects classification performance or duplicate detection performance, we propose novel features
that capture both syntactic and latent semantic relations between the paired questions; a detailed
discussion follows in Section 4.

3 CANDIDATE SELECTION

As the number of questions increase, there is a huge amount of historical questions in PCQA
communities. Duplicate detection in these questions becomes a time-consuming task. Before
DupDetector performs classification on question pairs (e.g., (m, t )), we first select some candidate
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questions m to be paired with the newly issued question t . This step reduces the search space of
the duplicated question t . Specifically, we propose four methods to implement candidate selection
and discuss them in this section. Selection with tags (Section 3.1) is the basic method that all three
selection methods perform. Query likelihood algorithms (Section 3.2) are adapted, inspired by the
ranking systems used in search engines. BM25 is a well-known and effective ranking algorithm for
information retrieval tasks, and we adapt it to our candidate selection task (Section 3.3). Finally, we
discuss our proposed method that utilizes a topic model to select candidate questions (Section 3.4).

3.1 Candidate Selection with Tags

Tags are mandatory inputs when posting a new question on many PCQA forums (e.g., all subfo-
rums of StackExchange). Therefore, they are reliable indicators of the topics the question belongs
to. We conduct a naive filtering approach on possiblem to filter out questions that belong to a dif-
ferent programming language or technique using tags. Specifically, we prune existing questions
that have no common tags with t , thus narrowing the search space for candidate duplicate ques-
tions considerably. We take this selection method as a prerequisite for other selection methods.

3.2 Candidate Selection with Query Likelihood Model

Upon naive selection using tags, we propose a further selection based on the query likelihood
algorithms. The basic idea of the query likelihood is to estimate a language model for each docu-
ment in a collection and then rank them by the likelihood of the query according to the estimated
language model [40]. A core problem in language model estimation is smoothing, which assigns
non-zero probability to unseen words, aiming to achieve higher accuracy.

Query likelihood is utilized in search engines as a “quick-ranking” of possible documents to an
issued query before performing a more complex “re-ranking” step which outputs the final ranked
list of documents given a query. We adopt this idea and propose to rank all the historical questions
and choose the top ranked questions as candidates to further perform the classification task. To
apply this query likelihood-based ranking in the candidate selection in our work, we consider each
existing question as a document and turn the “query likelihood” into “question likelihood,” which
examines the likelihood between existing questionm and new question t . The question likelihood
is defined using log likelihood, as follows by adapting equations in Zhai et al. [40]:

log P (t|m) =
∑

w ∈t
log

P (w |m)

αP (w |Q )
+ n logα +

∑

w ∈t
log P (w |Q ), (1)

wherew is a word in the new question t , n is the length of the query, α is related to the smoothing
parameter, and Q is the collection of the questions. When performing ranking,

∑
w ∈t log P (w |Q )

can be ignored as it is independent of the questionm.
We adopt Jelinek-Mercer smoothing [21], and the language model is defined as follows:

P (w |m) = (1 − λ)PML (w |m) + λPML (w |Q ),

PML (w |m) =
t f (w,m)∑

w
′ ∈m t f (w ′,m)

,

PML (w |Q ) =
t f (w,Q )∑

w
′ ∈Q t f (w ′,Q )

,

(2)

where PML (w |m) is the Maximum Likelihood estimate of wordw in existing question m, PML (w |Q )
is the Maximum Likelihood estimate of word w in the question collection Q , t f (w,m) is the fre-
quency of word w in m, and λ is the smoothing parameter (α = λ).
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We also apply Bayesian smoothing using Dirichlet priors [40], and the language model is defined
as follows:

P (w |m) =
t f (w,m) + μP (w |Q )∑

w
′ ∈m t f (w ′,m) + μ

, (3)

where the Dirichlet parameters are μP (w1 |Q ), μP (w2 |Q ), . . . , μP (wn |Q ), n is the total number of
unique words in Q , μ is the smoothing parameter, and α =

μ∑
w

′ ∈m t f (w
′
,m)+μ

.

We adopt the parameter suggestions provided by empirical studies on smoothing methods for
language models given by Zhai et al. [40].

3.3 Candidate Selection with BM25

BM25 [32] is another widely used and empirically well-performing ranking algorithm. It is a bag-
of-words retrieval function that ranks a set of documents based on the query terms appearing in
each document. To adapt BM25 to our task to score candidate historical question m given a new
question t , we use the following equation [1]:

BM25(t ,m) =
∑

w ∈(t∩m)

t f (w, t)
(k + 1)t f (w,m)

t f (w,m) + k (1 − b + b |m |
avдl

)
loд

n + 1

d f (w ) , (4)

where t f (w,m) is the frequency of word w in the master question m, avдl is the average length
of questions, d f (w ) is the number of questions word w appear, n is the total number of questions,
and b and k are free parameters.

3.4 Candidate Selection with Topics

In this section, we discuss our proposed method that ranks candidate duplicate questions using
topical similarity, which is obtained by the topic model. Latent Dirichlet Allocation (LDA) [6] is a
well-known implementation of the topic model that extracts topics unsupervisedly from document
collections. It posits that each document is a mixture of a small number of topics, and each word’s
creation is attributable to one of the document’s topic. The outputs of the algorithm are two dis-
tributions: the document-topic multinomials and topic-word multinomials. The topic distribution
(i.e., document-topic multinomials) for a document learned by LDA constitutes its topical vector.
LDA does not work well for short texts and, as such, may not be directly applicable to PCQA posts.
To learn topics for our dataset, we adopt a modified LDA [25], which is designed for extracting
topics from short texts. To apply LDA, we consider each question as a document. We learn a topic
model for the concatenation of question titles and body contents. Then we compute cosine simi-
larity between topical vectors of a question pair (m, t ). Question pairs are ranked according to the
computed topical similarities, and we choose the top-ranked pairs as the candidate duplicate pairs
for further examination.

4 FEATURE MODELING

Upon obtaining candidate questions, we pair them with the new question and generate features
from the pair. Effective features are developed to classify the pairs as duplicate or nonduplicate.
Given a question pair (m, t ), we develop three groups of features, as listed in Table 1. The features
include vector similarity (Section 4.1) and relevance features (Section 4.2), which are computed on
the full sentence of m and t , and an association feature (Section 4.3), which leverages the mined
association pairs and lexical features on spans of m and t .

ACM Transactions on Internet Technology, Vol. 18, No. 3, Article 37. Publication date: April 2018.
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Table 1. Feature Generation in DupDetector. (m, t ) Is a Pair of Questions; sm , st Are Spans

inm and t , Respectively

Vector similarity feature*.

� cosine similarity of vectors onm and t using doc2vec.

Relevance features*.

� LMjm (m �→ t ), question likelihood using
Jelinek-Mercer smoothing.

� BM25(m �→ t ), BM25 value of the (m, t ) pair.

� LMdir (m �→ t ), question likelihood using
Dirichlet prior smoothing.

� IBS (m �→ t ), information-based similarity.

� DRFS (m �→ t ), divergence from randomness
similarity.

Association feature [5, 39].

� count of 〈lemma(sm ), lemma(st )〉 if 〈lemma(sm ), lemma(st )〉 ∈ (A), 0 otherwise. (A is the set of
mined association pairs)

� lemma(sm ) ∧ lemma(st ). lemma(w ) is the
lemmatized word of w .

� pos (sm ) ∧ pos (st ). pos (w ) is the POS tag of w .

� lemma(sm ) and lemma(st ) are synonyms? � lemma(sm ) and lemma(st ) are WordNet
derivations?

*Vector feature and other features are computed onm and t ’s title, body and, the concatenation of the
both.

4.1 Vector Similarity Feature

The vector similarity feature is computed on the vector representation of master question m and
target question t . A conventional approach to vectorize text is to compute tf-idf scores for doc-
uments. Each question is considered as a document, and we generate a tf-idf vector. Cosine
similarity for a question pair is then computed to serve as the vector similarity feature, which is
considered as the baseline in this work.

Plenty of other methods could map text to high-dimensional space, among which neural meth-
ods for learning word embeddings/vectors have seen many successes for a range of NLP tasks.
word2vec, a seminal work proposed by Mikolov et al. [28], is an efficient neural architecture to
learn word embeddings via negative sampling using a large corpora of text. Paragraph vectors,
or doc2vec, was then introduced to extend word2vec to learn embeddings for word sequences
[24]. doc2vec is agnostic to the granularity of the word sequence: It could learn embeddings for
a sentence, paragraph, or document. Two implementations of doc2vec were originally proposed:
dbow and dmpv. The work in Lau and Baldwin [23] evaluated dbow and dmpv on a range of extrinsic
tasks and found that the simpler dbow trains faster and outperforms dmpv. We therefore use the
dbow architecture for all experiments involving doc2vec in this article. Given the question pair
(m, t ), we apply doc2vec on the title, body content, tags, concatenation of titles, and body con-
tents (title+body) and the concatenation of title, body, and tags (title+body+tag) on both master
questionm and target question t . Thus, we train five doc2vec models, one for each type of vector,
and obtain 10 vectors for each question pair, namely tt , tm , bt , bm , tat , tam , tbt , tbm , tbtat , and
tbtam in Figure 2. Cosine similarities on (tt , tm ), (bt , bm ), (tat , tam ), (tbt , tbm ), and (tbtat , tbtam )
constitute vector similarity features. The vector feature is generated according to the first part of
Table 1.

4.2 Relevance Feature

The relevance feature reflects the relevance between question m and t in a question pair (m, t ).
The relevance feature is generated according to the second part of Table 1. Question likelihood

ACM Transactions on Internet Technology, Vol. 18, No. 3, Article 37. Publication date: April 2018.
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Fig. 2. Vector similarities computation. The subscript t and m denote target question t and master question

m, respectively.

using a language model with Jelinek-Mercer smoothing and Bayesian smoothing are computed
according to Equations (1) to (3), and the likelihood value serves as two features referred to as
lmjm and lmdir. BM25 is computed using Equation (4) and generates a feature denoted bm25. It
should be noted that, in order to differentiate the ranking algorithms and relevance features, we
use different notations in Section 3 (uppercase) and here (lowercase).

In addition to these features, we also compute question relevance using two families of probabil-
ity models. One is Divergence From Randomness Similarity (DFRS) [3]. The other is Information-
Based Similarity (IBS) [11]. In DFRS, term weights are computed by measuring the divergence be-
tween a term distribution produced by a random process and the actual term distribution. This
feature is denoted as dfrs. Amati et al. [3] proposed a framework for deriving probabilistic models
for information retrieval. In their method, a query is assumed to be a set of independent terms
whose weights are computed by measuring the divergence between a term distribution produced
by a random process and the actual term distribution. Then the term weights are tuned via normal-
ization methods to measure the similarity between document and query. Specifically, their frame-
work builds the weighting algorithm in three steps: (i) the first step is to measure the informative
content of the term in the document, and they applied seven models for this task, namely Limit-

ing form of Bose-Einstein, Geometric approximation of Bose-Einstein, Poisson approximation of the

Binomial, Divergence approximation of the Binomial, Inverse document frequency, Inverse expected

document frequency, and Inverse term frequency; (ii) then they apply two normalization methods,
Laplace’s law of succession and Ratio of two Bernoulli processes, to compute the information gain
when accepting the term in the document as a good document descriptor; (iii) finally, they resize
the term frequency in light of the length of the document by using two hypothesis: H1 and H2 . We
further discuss the combinations of these models in the experiment (Section 5.2.2).

Similar to language models, BM25, and the DFR framework, IBS is developed based on the idea
that the respective behaviors of terms in documents carry information about these words. Dif-
ferent from the abovementioned works, information-based frameworks use information models,
and especially Shannon information is used to capture whenever a term deviates from its average
behavior. As with DFR, IBS utilizes the term’s informativeness to measure the query-document
relevance and applies two probabilistic distributions to model term occurrence: Log-logistic and
Smoothed power-law. We adopt this framework to measure the relevance between two questions.

4.3 Association Feature

The association pair refers to the pair of phrases that co-occur frequently in duplicate question
pairs. They are strong indicators for identifying duplicate questions. For example, the question
“Managing several EditTexts in Android”5 is the duplicate of question “android: how to elegantly

set many button IDs” in which the “EditTexts” and “button IDs” are an association pair because

5https://stackoverflow.com/questions/7698574/managing-several-edittexts-in-android.
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“EditTexts” are used to set “button IDs”. In other words, they are semantically related. Therefore,
strong association between phrases in (m, t ) could suggest a high similarity between these two
questions. We first mine association pairs from existing duplicate question pairs. Then we generate
two types of features based on the mined association pairs and denote them as association feature

and association score feature. Note that we use only question titles to generate association pairs.

4.3.1 Association Pair Mining. We use existing duplicate questions (marked as “Duplicate” in
Stack Overflow) and their master questions to form question pairs. For a pair of question (m, t ), we
learn the alignment of words between t and m via machine translation [29]. The word alignment
is performed in each direction of (m, t ) and (t ,m) and then combined. Given the word alignments,
we then extract associated phrase pairs based on 3-gram heuristics developed in Och and Ney [30]
and prune those that occur less than 10 times, producing more than 130K association pairs from
25K duplicate questions. To cover a wider range of general phrase pairs, we further include a com-
plementary set of 1.3 million association pairs [5] mined from 18 million pairs of questions from
WikiAnswers.com. We denote this set of association pairs asA; examples fromA are (“command
prompt”, “console”) and (“compiled executable”, “exe”), and the like.

4.3.2 Association Feature Generation. Given target question t and master question m, we iter-
ate through all spans of text st ∈ t and sm ∈m and check if they are associated phrases in A. If
〈st , sm〉 ∈ A, we retrieve its counts from A as the feature value; otherwise it is set to zero.

We also consider lexical features not only for association pairs, but also for other phrase pairs.
Lexical features reflect that whether the word pairs in t andm share the same lemma, POS tag, or
are linked through a derivation link on WordNet [5, 15]. Lexical features are only generated from
the titles ofm and t . For each (m, t ), we iterate through spans of text and generate lexical features
according to the third section of Table 1. For example, for question pair (“Managing several EditTexts

in Android”, “android: how to elegantly set many button IDs”), an association feature (“EditTexts” ∈ t ,
“button IDs” ∈ m) is generated for the span (“EditTexts”, “button IDs”).

5 EVALUATIONS OF DUPDETECTOR

In this section, we provide analysis on the behaviors of different features individually and their
combinations. We compare our method with the state-of-the-art benchmarks and evaluate the
effectiveness of the candidate selection methods.

5.1 Experimental Setup

5.1.1 Implementation. We implemented candidate selection with language models and BM25,
as well as the relevance features by leveraging the lucene library6 and developing our own Python
wrapper. The parameters were set according to the suggestion in Zhai et al. [40]. For generating
association feature, we used the GiZA++7 to get word alignment-based phrase pairs and develop
the association miner based on SEMPRE [4]. We used the gensim8 implementation of doc2vec,
and the hyper-parameter settings used in our experiments are adopted from our previous work
in Zhang et al. [42]. Topic numbers in generating topical similarity ranking were set to 30 for all
topic models. All experiments were conducted on a 64-bit Windows 10 Pro PC with an Intel Core
i5-6440 processor and 16GB RAM.

6https://lucene.apache.org/.
7http://www.statmt.org/moses/giza/GIZA++.html.
8https://radimrehurek.com/gensim/.
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Table 2. Statistics of Datasets

Languages #Total #Duplicates
Stack Overflow

Java 716,819 28,656
C++ 411,435 14,142
Python 552,695 13,823
Ruby 148,504 2,007
Html 587,499 12,080
objective-c 233,404 5,229

Quora
NA 404,301 149,274

#Total is the total number of questions, #dupli-
cates is the number of questions that are labeled
as duplicates.

5.1.2 Datasets. We mainly used the data dump of Stack Overflow posts from April 2010 to June
20169 to evaluate DupDetector. The dump consists of 28,793,722 questions posted. We pruned
questions without answers, producing 11,846,518 valid questions, among which 250,710 pairs of
questions are marked as duplicates. Our primary dataset is the Java-related posts (identified by
using tag containing “java”, case-insensitive), a subset of the Stack Overflow dump. To test the
robustness of DupDetector, we additionally evaluated DupDetector on subsets of other program-
ming languages. We further used the Quora10 dataset to evaluate the effectiveness of DupDetector
on natural language questions. This dataset was released in early 2017 for the purpose of involving
more research efforts in detecting duplicate posts in Quora. The statistics of evaluated datasets are
detailed in Table 2. Note that the figures in the table are for valid posts. We observed from the ta-
ble that the ratio of nonduplicate pairs (negative examples) to duplicate pairs (positive examples)
is very skewed in Stack Overflow dataset. For example, only 0.039% of Java posts are duplicates.
There have been plenty of methods in machine learning literature which deal with supervised
learning for imbalanced class issues. One such popular method is to randomly sample the skewed
or majority class data and make the dataset balanced [1, 13, 17, 38]. To avoid sampling bias, we
drew five random samples of nonduplicate pairs, and we report our results on the average of the
experimental results from the five random samples.

Taking Java posts as example, we had 28.6K Java duplicate question pairs. Accordingly, we
randomly sampled 28.6K nonduplicate question pairs for each of the five random samples. Our
dataset thus has 57.2K question pairs or 114.4K questions. We used all the existing duplicates to
mine association pairs. To train the doc2vec and LDA models, we used all Java questions in our
dataset (114.4K). We randomly sampled 5K duplicate pairs to generate association features. We
used the remainder of 23.6K duplicate pairs (and the same number of nonduplicates) for evaluat-
ing DupDetector. To generate training and test partitions, we split them to a ratio of 4:1.

For other programming languages and the Quora dataset, we followed the same procedures as
described for dataset generation, except for those with less than 10K duplicate pairs. For these
subsets, we split them to the ratio of 1:3 for association feature generation and DupDetector eval-
uation, respectively. Training and test partitioning remain the same (at the ratio of 4:1).

9https://archive.org/details/stackexchange.
10https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs.
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5.1.3 Preprocessing. As the Stack Overflow data dump provides texts in HTML format, we
first parsed and cleaned the data, extracting the question title, body, and tags. We also used
the “RelatedPostId” and “PostTypeId” information to identify duplicate questions. Then we
performed a special mapping from symbols to texts tailored for programming-related questions.
Specifically, we mapped all symbols used in programming languages to their symbol names (i.e.,
“$” to “dollar”). The set of symbols used is {!, @, #, $, %, ,̂ &, *, (,), (),+, {, }, {}, >>, .*, _}.11 Note that
we only map symbols that are tokenized as a single token. For example, “div[class=]” will not be
converted. The mapping was performed only on question titles as question bodies may contain
source code where symbol conversion might not be sensible. We then did general text processing,
including stop words pruning, tokenization, and lemmatization. For the Quora dataset, we only
performed general text processing as the dataset provided is clean.

5.1.4 Evaluation Metrics. We evaluated DupDetector using two groups of metrics. The first
group of metrics evaluates the pure classification performance given various features developed.
The other group of metric evaluates the overall performance of the two-stage duplication
detection.

• When we analyzed the behavior of individual features, we used common classification met-
rics: (i) Recall rate reflects the ability to identify duplicate pairs among the true duplicate
pairs; (ii) F1 score is the harmonic mean of precision and recall, and is a measure of accu-
racy; and (iii) Area under the Receiver Operating Characteristic (ROC) curve (AUC) computes
the probability that our model will rank a duplicate higher than a nonduplicate. A higher
AUC score indicates better classification performance. The ROC curve shows how the true-
positive rate changes with respect to the false-positive rate.

• Taking the ranking into consideration, the evaluation of DupDetector cannot solely com-
pute the recall within the ranked questions. We also need to consider whether the duplicates
are listed by the ranking algorithms. Therefore, we modified the recall as the division of the
number of correctly detected duplicates to the number of total duplicates in our test dataset
and refer to it as Recall@K, where K is the number of top-ranked questions selected for
duplicate detection.

5.1.5 Classifiers. In terms of classifiers, we experimented with the following models: decision
tree [7], K-Nearest Neighbors (KNN) [2], Support Vector Machines (SVM) [19], logistic regres-
sion [36], random forest [20], naive Bayes [10], and adaptive boosting (AdaBoost) [16]. For incre-
mental (or online) learning models, we used linear SVM with Stochastic Gradient Descent (SGD)
learning [41], online passive aggressive [14], and single-layer and multi-layer percepton [12].

The key parameters used in these classifiers are as follows. We set the maximum depth of the
tree to 5 and used Gini impurity to measure the tree split in decision tree. We set K to 5 in KNN
and weighted each neighborhood equally. In SVM, we used a linear kernel. For logistic regression,
we use l2 penalty. In random forest, the number of trees was set to 10, and the maximum depth
of the tree was 5. For naive Bayes, we used a Gaussian naive Bayes classifier. In AdaBoost, the
number of estimators was set to 50, while learning rate was set to 1. For incremental models, we
used l2 penalty for linear SVM with SGD, set step size as 1, and used a hinge loss function for
online passive aggressive. In the multilayer perceptron, we used the α (i.e., l2 penalty) as 1, and
the number of layers was set to 50. We adopted scikit-learn12 implementations of all the classifiers

11Symbols are collected from: https://www.tutorialspoint.com/computer_programming/computer_programming_chara
cters.htm.
12http://scikit-learn.org/stable/.
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Table 3. Performance of Different Combinations of Vector Similarity Features in DupDetector and VSM

Classifiers title body tags title+body
title+body+

tags
title+body,
title, body all* VSM

Recall

KNN 0.540 0.635 0.538 0.66 0.715 0.789 0.830 0.732

Linear SVM 0.440 0.689 0.42 0.732 0.742 0.726 0.787 0.608

RBF SVM 0.420 0.617 0.418 0.669 0.696 0.788 0.887� 0.686

Naive Bayes 0.409 0.694 0.408 0.737 0.754 707 0.768 0.678

Logistic Regression 0.484 0.686 0.476 0.736 0.756 0.767 0.855 0.736

Decision Tree 0.506 0.635 0.371 0.651 0.677 0.757 0.833 0.760

Random Forest 0.474 0.603 0.419 0.664 0.692 0.739 0.803 0.722

AdaBoost 0.442 0.566 0.415 0.654 0.687 0.753 0.858 0.696

F1

KNN 0.556 0.666 0.545 0.707 0.754 0.823 0.863 0.780

Linear SVM 0.508 0.708 0.501 0.758 0.784 0.752 0.815 0.743

RBF SVM 0.419 0.688 0.499 0.741 0.770 0.827 0.897� 0.788

Naive Bayes 0.328 0.708 0.493 0.759 0.784 0.753 0.803 0.785

Logistic Regression 0.467 0.706 0.529 0.758 0.785 0.795 0.871 0.803

Decision Tree 0.572 0.691 0.474 0.733 0.760 0.796 0.849 0.811

Random Forest 0.558 0.691 0.529 0.743 0.767 0.810 0.838 0.798

AdaBoost 0.540 0.658 0.507 0.736 0.767 0.799 0.881 0.790

*all is five-dimensional combining title, body, tag, title+body and title+body+tag vectors; first five feature columns are
one-dimensional; the sixth column (title+body, title, body) is three-dimensional.
Bold values indicate the best result among all features with a certain classifier. Bold� refers to the best result among all
classifiers.

just mentioned. All other parameters were set using the default settings in scikit-learn. For each
classifier, we reported the average results of five trials.

5.2 Results

In this section, we first report the behaviors of features in terms of recall and F1 score within each
category of features (Section 5.2.1 to Section 5.2.3). Next, we analyze classification performance
using three categories of features independently and various combinations of them (Section 5.2.4).
These evaluations are performed on Java-related questions. Then we experiment DupDetector
with several classifiers and compare it to state-of-the-art systems on a range of programming
languages. (Section 5.2.5). Finally, runtime analysis is reported for different ranking algorithms in
DupDetector and a detection method without ranking (Section 5.2.6).

5.2.1 Vector Similarity Feature Analysis. As described in Section 4.1, we trained five doc2vec
models, hence we obtained 10 vectors for each question pair. Cosine similarities on the five pairs
of vectors were computed, and we denote (for example) title vector similarity as title in Table 3,
where the classification performances of multiple combinations of these five vector similarities
using a range of classifiers are detailed. The first five feature columns are one-dimensional
features; namely, for each question pair, only one value is used for classification. The next two
columns are combinations of vector similarities: title+body, title, body is three-dimensional,
and all is five-dimensional. The last column contains the baseline tf-idf document vectors (VSM).
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The results show that among one-dimensional features, vectors computed on longer texts per-
forms better than shorter texts: tag produces the lowest recall, and title is slightly better than tags,

following body and title+body, which is the vector learned on the concatenation of title and body
texts. title+body+tag is learned on the concatenation of title, body, and tags texts and gives the
best among the five, but is still worse than VSM, which produces 73.2% recall. Three-dimensional
feature title+body, title, body produces better recall than one-dimensional features and VSM,
giving 78.9% recall. When considering all the vectors, the five-dimensional feature all gives the
highest recall and achieves more than 75% recall for all the classifiers evaluated, among which
RBF SVM produces 88.7% recall. In terms of F1 score, the results are consistent with recall: Higher
dimensional features perform better than lower dimensional features; all achieves the highest F1

score for all the evaluated classifiers compared to other features. The best F1 score is achieved using
the RBF SVM classifier (0.897). Therefore, we chose all, the five-dimensional feature, to represent
the vector similarity feature in the following experiments.

The classifiers performed differently on features with different dimensions. For the five-
dimensional feature, RBF SVM produces the best recall, followed by AdaBoost and Logistic Regres-
sion, then Decision tree and KNN. Linear SVM and Naive Bayes are worse than the other classifiers.
These results indicate that RBF SVM is the best classifier for the vector similarity feature.

It is important to note that the dimension of vectors learned by doc2vec will affect the
effectiveness of the vector similarity feature. We observed in extensive analysis that higher
dimension vectors produce better classification performance. We only report the results based on
the 100-dimensional (see Zhang et al. [42] for doc2vec parameter settings) doc2vec vectors in this
article.

5.2.2 Relevance Feature Analysis. The relevance feature considers multiple probability models
to produce relevance scores between questions. We denote the language model using Jelinek-
Mercer smoothing as lmjm and using Bayesian smoothing with Dirichlet priors as lmdir. As
described in Section 4.2, DFR provides multiple models. It supports seven basic models and two
normalization methods, producing 14 combinations. Due to the limited space, we only chose
the combinations that performed well in Amati and Van Rijsbergen [3], which are BeB2, GB2,
and I (F )B2, in which Be is the Limiting form of Bose-Einstein, G refers to Geometric approx-

imation of Bose-Einstein, and I (F ) represents Inverse term frequency. We denote these three
solutions as dfrs-BeB2

, dfrs-GB2
and dfrs-I(F)B2

respectively. In the IB framework, two probability
models are provided, and we denote the two solutions as ibs-SPL for smoothed power-law and
ibs-LL for log-logistic. For the relevance feature computed via BM25, we denote this feature as
bm25.

From Table 4, we observe that bm25 gives the best recall among the five one-dimensional fea-
tures on most of the classifiers except for Linear SVM, with which lmjm performs the best (75.1%),
and Random Forest, with which ibs-LL produces the highest recall (74.1%). The two features com-
puted from IB perform slightly differently, and, in most cases, ibs-LL gives better results compared
to ibs-SPL. The three features derived from DFR show similar performance with dfrs-I(F)B2

which
achieves the best recall for most classifiers. From the results, we can see DBRS and IB features in-
terchangeably give better recall across all the classifiers evaluated, indicating they are similar. For
query likelihood-based features lmjm and lmdir, lmjm gives better performance than lmdir in terms
of recall with most of the classifiers, except for Random Forest. It is hard to tell which feature is
better than another as the recall varies with different classifiers. The eight-dimensional feature all,
the combination of the eight features, always gives the highest recall. Similarly, bm25 produces
the highest F1 score for most classifiers compared to other one-dimensional features, and all al-
ways performs the best in terms of F1 score, with the highest value (0.842) when using AdaBoost.
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Table 4. Performance of Different Combinations of Relevance Features in DupDetector

Classifiers lmjm lmdir ibs-LL ibs-SPL dfrs-BeB2
dfrs-GB2

dfrs-I(F)B2
bm25 all*

Recall

KNN 0.903 0.898 0.908 0.901 0.908 0.909 0.912 0.913 0.917�

Linear SVM 0.751 0.677 0.722 0.717 0.711 0.713 0.717 0.742 0.759

RBF SVM 0.750 0.735 0.735 0.731 0.742 0.741 0.749 0.756 0.760

Naive Bayes 0.859 0.692 0.859 0.853 0.854 0.855 0.859 0.859 0.863

Logistic Regression 0.638 0.551 0.673 0.653 0.657 0.658 0.667 0.664 0.697

Decision Tree 0.725 0.705 0.735 0.733 0.740 0.743 0.749 0.750 0.756

Random Forest 0.719 0.732 0.741 0.729 0.726 0.725 0.731 0.724 0.755

AdaBoost 0.748 0.746 0.756 0.716 0.746 0.745 0.745 0.760 0.763

F1

KNN 0.675 0.691 0.683 0.680 0.677 0.678 0.683 0.685 0.693

Linear SVM 0.814 0.797 0.806 0.800 0.799 0.801 0.805 0.830 0.834

RBF SVM 0.810 0.829 0.807 0.799 0.813 0.811 0.821 0.830 0.836

Naive Bayes 0.774 0.725 0.774 0.769 0.766 0.767 0.774 0.774 0.781

Logistic Regression 0.760 0.706 0.788 0.768 0.776 0.776 0.783 0.784 0.809

Decision Tree 0.797 0.813 0.807 0.803 0.811 0.814 0.821 0.829 0.837

Random Forest 0.801 0.828 0.822 0.811 0.804 0.807 0.813 0.824 0.835

AdaBoost 0.814 0.829 0.828 0.821 0.814 0.815 0.817 0.835 0.842�

*all is eight-dimensional combining all features.
Bold values indicate the best result among all features with a certain classifier. Bold� refers to the best result among all
classifiers.

Interestingly, KNN produces the highest recall (91.5%) for the all feature. However, KNN gives the
lowest F1 score for all, indicating that the precision given by KNN on all is very low. Naive Bayes
produces the second best recall but gives a lower F1 score compared to AdaBoost. As a balance
between recall and F1 score, we considered Naive Bayes and AdaBoost to be the most suitable
classifiers for the relevance feature and used all to represent the relevance feature in the following
evaluations.

5.2.3 Association Feature Analysis. As the association feature is a sparse feature in a very high-
dimensional space, we additionally chose some online learning models due to the computation
requirement. Table 5 details the classification performance of the association feature on a range of
classifiers. KNN and SVMs fail on the association feature, showing they are not scalable. Among
other offline classifiers, Logistic Regression (86.1%) outperforms others, followed by AdaBoost.
For online learning algorithms, multi-layer perceptron produces the best recall (86.8%). Linear
SVM with SGD is slightly worse in terms of recall (86.3%). Similarly, for F1 score, Logistic Regres-
sion gives the highest value (0.872) among offline classifiers, while multi-layer perceptron is the
best in online algorithms, achieving a 0.866 F1 score. The results show that online learning is not
necessarily better than offline learning algorithms, but the best recall is achieved by the online
learning algorithm. Therefore, we considered multi-layer perceptron as the best classifier for the
association feature.

When we mined the association pairs, we used all the duplicate questions in our dataset, re-
gardless of the differences among programming languages. Intuitively, mining association pairs
separately for language-specific questions would result in a more accurate association feature,
producing better classification results. We have not addressed this issue in this work and will
leave it for the future.
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Table 5. Performance of Association Features

in DupDetector

Classifiers Recall F1

KNN (K=5) -* -
Linear SVM - -
RBF SVM - -
Naive Bayes 0.831 0.826
Logistic Regression 0.861 0.872

Decision Tree 0.816 0.817
Random Forest 0.752 0.666
AdaBoost 0.845 0.854
Linear SVM with SGD 0.863 0.828
Aggregate SGD 0.850 0.855
On-line passive
aggressive

0.785 0.833

Single-layer Perceptron 0.837 0.846
Multi-layer Perceptron 0.868 0.866

*‘-’ denotes corresponding algorithm fails on association feature.
Bold values indicate the best result among one of the two groups
of classifiers.

5.2.4 Performance Comparison of the Three Categories of Features. In previous sections, we
reported our analysis of DupDetector’s classification performance using the following features
independently: vector similarity (VS), relevance (RE), and association (AS). In this evaluation, we
compared the performance of these features’ various combinations. As reported in Section 5.2.1,
RBF SVM produces the best performance for VS. However, it fails on AS. Thus we did not
choose it as classifier here. AdaBoost and naive Bayes are reported the most suitable for RE
in Section 5.2.2, and AdaBoost is better for VS and ASS. Although logistic regression gives the
worst performance for RE, it shows effectiveness for VS and AS. Muli-layer perceptron is the
best for AS, as shown in Section 5.2.3. Therefore, we compared the feature combinations over
naive Bayes, AdaBoost, logistic regression, and multi-layer perceptron and reported the results in
Table 6.

In Table 6, classification recall and F1 score using different combinations of features over the
selected four classifiers are summarized. When working independently, VS, RE, and AS perform
the best interchangeably with different classifiers. For example, when using Naive Bayes, RE is the
best feature. But for AdaBoost, VS gives the highest recall and F1 score. The combination of any two
of the features outperforms a single feature, suggesting that these three features complement each
other. When combining all the individual features (VS+AS+RE), the best performance of a certain
classifier is always achieved. For example, Naive Bayes achieves more than 0.890 in terms of recall
and 0.841 for the F1 score. Multi-layer perceptron always gives the best performance among the
four classifiers with different feature combinations. For VS+AS+RE, it achieves 96.3% recall and a
0.954 F1 score. Therefore, we used multi-layer perceptron as the classifier and VS+AS+RE as the
feature in DupDetector for the rest evaluations.

Figure 3 presents the ROC curve and AUC score when these features were used in combina-
tions. The results are consistent with the recall and F1 score: VS+AS+RE always give the best
performance.
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Table 6. Performance of Different Combinations of Three Categories of Features in DupDetector

Classifiers VS RE AS VS + RE VS + AS AS + RE VS + AS + RE

Recall

Naive Bayes 0.768 0.863 0.831 0.862 0.832 0.863 0.890

AdaBoost 0.858 0.763 0.845 0.921 0.921 0.936 0.955

Logistic Regression 0.855 0.697 0.861 0.946 0.919 0.948 0.963

Multi-layer Perceptron 0.836 0.924 0.868 0.946 0.931 0.953 0.963�

F1

Naive Bayes 0.803 0.781 0.826 0.821 0.827 0.832 0.841

AdaBoost 0.881 0.842 0.854 0.926 0.931 0.915 0.939

Logistic Regression 0.871 0.809 0.872 0.927 0.930 0.927 0.949

Multi-layer Perceptron 0.852 0.867 0.866 0.915 0.925 0.924 0.954�

Bold values indicate the best result among all features with a certain classifier. Bold� refers to the best result among all
classifiers.

Fig. 3. ROC and precision-recall curve on different combination of features in DupDetector.

5.2.5 Performance Comparison to the State of the Art. We compared DupDetector to state-of-
the-art Dupe [1] on PCQA duplicate detection over seven programming languages using different
ranking methods. As is Dupe, DupDetector is a two-stage “ranking-classification” method. Thus,
we used the defined Recall@K metric to evaluate their performance, and this recall differs from
the recall we used in previous evaluations. In this section, we refer to Recall@K as recall for
simplicity. In order to compare, we reimplemented Dupe according to the described heuristics in
Ahasanuzzaman et al. [1] because both the data and implementation of the techniques are not
available. We can not guarantee that our implementation is errorless, but we tried our best to
capture all the details of Dupe. Interestingly, the performance values are slightly better than the
reported values in Ahasanuzzaman et al. [1]. We only report the suggested number of K with the
best performance of Dupe due to limited space.

Table 7 presents the results over classification recall. Dupe adopts BM25 as the ranking method
and uses Random Forest as the classifier. For DupDetector, we examined the impact of four rank-
ing methods to the recall. Note that we used different notations for ranking methods (uppercase)
and relevance features (lowercase). Topical ranking gives the worst performance, suggesting that
the topical similarity is inaccurate when examining the similarity between questions. The two
query likelihood methods produce similar recall across the seven languages: LMJM outperforms
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Table 7. Recall@K on Dupe and DupDetector with Different Ranking Methods

Dupe@20 DupDetector@20

Languages BM25 Topical LMJM LMDIR BM25

Java 0.537 0.505 0.774 0.772 0.782

C++ 0.516 0.492 0.772 0.769 0.779

Python 0.542 0.501 0.776 0.779 0.786

Ruby 0.668 0.577 0.696 0.701 0.705

Html 0.509 0.482 0.733 0.735 0.736

Objective-C 0.564 0.513 0.728 0.727 0.733

Table 8. Average Feature Generation Time

for a Question Pair in DupDetector

VS AS RE

Time (sec.) 0.635 0.061 6.575e-5

LMDIR in Java, C++, and Objective-C questions but is worse in other languages. They are both
worse than the BM25 ranking. Then we compared DupDetector with BM25 to Dupe. For all seven
languages, DupDetector outperforms Dupe by at least 4% (Ruby). The biggest improvement is on
C++, where the gain is greater than 25%. The significant performance gap highlights the strength
of DupDetector.

5.2.6 Runtime Analysis. To evaluate the effectiveness of candidate selection, we analyzed the
time used for duplicate detection with and without candidate selection. We used the Java ques-
tions in this evaluation. We excluded the time used to train the doc2vec model and classifiers and
mine association pairs as they are common actions and can be done separately from the detection
process. Therefore, the time for ranking-based method consists of ranking, pairing, and feature
generation time. On the other hand, the time used for methods without candidate selection only
contains the pairing and feature generation time but needs to consider all historical questions.
Ranking time depends on the number of total historical questions, and pairing time depends on
how many questions need to be examined given a newly issued question. Table 8 lists the average
feature generation time for a question pair in our implemented DupDetector. Interestingly, VS
computation occupies the largest part of the time, which is 0.635 seconds. A possible reason is that
the model trained on a large corpus of questions, leading to time-consuming vector generation.
RE generation takes up the least time, 6.575e-5 seconds, while the generation of AS takes 0.061
seconds for each question pair in average.

Furthermore, we illustrated the comparison of the average time used for the evaluated methods
on different numbers of candidate questions in Figure 4(a). We used a logarithm plot (base=10)
to clearly show the performance difference. The larger gap between the two lines showcases that
the method with ranking stage considerably reduces computation cost and hence accelerates the
duplicate detection process. Moreover, consistent with common cognition, when K increases,
the time used increases. To further clearly showcase the impact of candidate number K , we also
depict the overall Recall@K given different K when applying or not applying candidate selection
in Figure 4(b). The larger K is, the better recall it achieves. However, performance still cannot
compete with the method without applying candidate selection. This result is consistent with
our previous evaluation, where Recall@K in Table 7 has a lower value than recall in Table 6.
The reason is that some possible duplicate questions could be mistakenly ranked very low in
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Fig. 4. Performance comparison on methods with/without candidate selection.

Table 9. Performances of DupDetector on the Quora

Dataset. K=20

Recall@20 F1 AUC Score Average Time

0.815 0.823 0.994 10.477 sec.

the ranking stage and are not included in the top K candidates to be examined. To this end, in
practice, it is necessary to compromise between efficiency and accuracy.

5.2.7 Evaluation on CQA Dataset. In this section, we report the evaluation of DupDetector on
the Quora dataset. The difference is that the Quora dataset contains questions using normal, natu-
ral languages, unlike the Stack Overflow dataset that contains symbols that are typically not seen
in natural languages. The intent of this evaluation is to examine the effectiveness of DupDetector
on more general CQA duplicate detection. Table 9 reports the results of four metrics when K is set
to 20. Recall@20 achieves 81.5%, which is slightly higher than the results reported in Table 7. The
reason is that the programming-related questions might cause some noise because the meanings
of symbols are difficult to comprehend automatically. Similarly, the AUC score is higher than
results produced by programming language-related questions. The average duplicate detection
time given a question is 10.477 seconds, which is shorter than the time used by Stack Overflow
questions due to their simpler preprocessing step. The results showcase that DupDetector is also
effective at detecting duplicates for normal CQA platforms, indicating that it is a generic approach.

6 RELATED WORK

Our work belongs to the task of mining CQA platforms and is to some extent related to paraphrase

recognition in the broader NLP community.

Mining CQA Platforms. Extensive research efforts have been devoted to mining CQA
platforms due to the increasing popularity of CQA. Most works focused on answer retrieval,
where the basic idea is to answer new question with the answers to similar historical questions
or that are semantically similar to the new question. Cao et al. [9] explored category information
in Yahoo! Answers and combined a language model with a translation model to estimate the
relevance of existing question–answer pairs to a query question. Wang et al. [37] identified similar
questions by assessing the similarity of their syntactic parse trees. Yang et al. [38] classified
questions based on heuristics and topical information to predict whether they will be answered.
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The work also empirically proved that classification-based methods outperform word-based
methods. Zhou et al. [44] studied synonymy and polysemy to measure question similarity and
built a concept thesaurus from Wikipedia for the task, with the ultimate goal of improving
question-answering from Yahoo! Answers. In recent years, programming CQA has been gaining
significant momentum and attracting increasing interest from the community. Treude et al. [35]
analyzed the types of questions posted on Stack Overflow and examined which kind of questions
were well answered and which remained unanswered. Correa et al. [13] studied the characteristics
of deleted questions on Stack Overflow to predict the possibility of deletion of a newly issued
question. Zhang et al. [43] proposed the first work to leverage supervised learning to detect
duplicate question. They used textual features derived from title, description, topic and, tag to
build the classifiers. Ahasanuzzaman et al. [1] conducted an extensive analysis to understand
why duplicate questions are created on Stack Overflow, and adopted the binary classification
idea to identify duplicate questions. Very recently, Zhang et al. [42] extracted features for Stack
Overflow question pairs by leveraging latent semantics learned through word2vec and frequently
co-occurring phrase pairs mined from existing duplicate question pairs. These features produce
strong performance for duplicate detection from Stack Overflow posts.

Paraphrase recognition. Paraphrase recognition (or paraphrase detection, paraphrase
identification) aims to examine whether two texts convey exactly the same information or have
similar implications. Extensive research efforts have been devoted to this task [18, 22, 26, 27, 31,
34]. Mihalcea et al. [27] measured text similarities by the similarities of component words, which
are computed using corpus-based and knowledge-based word semantic similarity measures. This
work is considered as the baseline for many following research efforts. Qiu et al. [31] detected dis-
similarities between phrases and made judgments based on the significance of such dissimilarities.
This method showed a key benefit of explaining the cause of the nonparaphrase sentence pair.
Socher et al. [34] learned feature vectors for phrases in syntactic trees and introduced dynamic
pooling to compute fixed-sized vectors from variable-sized matrices. The pooled representation
is then used as input to a classifier. Madnani et al. [26] performed classification on the features
extracted from the combination of eight machine translation metrics. Ji et al. [22] utilized latent
representation from matrix factorization as features to perform supervised learning on phrases.
He et al. [18] employed a Convolutional Neural Networks (CNN) model to learn sentence repre-
sentations at multiple levels of granularity. Then the information of two sentences is combined by
matching multiple distance heuristics. Paraphrase recognition techniques were recently adopted
in the QA communities to examine the quality of question paraphrase [39], which is the rewriting
of the original question, with the ultimate goal of improving the recall of QA.

7 CONCLUSION AND FUTURE WORK

We introduced DupDetector, a new state-of-the-art duplicate detection system for the PCQA
domain. DupDetector is a two-stage “ranking-classification” that efficiently and accurately
identifies duplicate questions from a large amount of historical questions. DupDetector consists
of a ranking-based candidate selection stage to reduce the search space for possible duplicates
and a classification stage driven by a few features derived using methods from the deep learning
and information retrieval literature. Leveraging prominent ranking algorithms and combining all
features in a classification model, DupDetector outperforms state-of-the-art duplicate detection
systems by at least 4%, and, in some cases, more than 25% in multiple programming languages
in terms of recall rate. As a product of the association feature, we have mined a set of associated
phrases from duplicate questions on Stack Overflow. These phrases are domain-specific to PCQA
and could be used in other tasks such as keyword recommendation for forum searching.
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Despite the strong performance of DupDetector, there is room for improvement. For example,
DupDetector does not identify that “isset in Jquery?” is a duplicate of “Finding whether the element

exists in whole html page”. After analysis, we find that the first question asks for functions in
JQuery that are similar to “isset” in PHP, which crosses the programming language boundary. We
will leave the development of techniques that tackle cross-language duplicate detection for future
work. Further, we can extract more features from different aspects (e.g., the users’ profiles). This
information could suggest the newly issued question’s quality by considering the reputation score
and expertise level of the system.
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