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ABSTRACT
Programming community-based question-answering (PCQA)
websites such as Stack Overflow enable programmers to find
working solutions to their questions. Despite detailed post-
ing guidelines, duplicate questions that have been answered
are frequently created. To tackle this problem, Stack Over-
flow provides a mechanism for reputable users to manu-
ally mark duplicate questions. This is a laborious effort,
and leads to many duplicate questions remain undetected.
Existing duplicate detection methodologies from traditional
community based question-answering (CQA) websites are
difficult to be adopted directly to PCQA, as PCQA posts
often contain source code which is linguistically very dif-
ferent from natural languages. In this paper, we propose
a methodology designed for the PCQA domain to detect
duplicate questions. We model the detection as a classifi-
cation problem over question pairs. To extract features for
question pairs, our methodology leverages continuous word
vectors from the deep learning literature, topic model fea-
tures and phrases pairs that co-occur frequently in duplicate
questions mined using machine translation systems. These
features capture semantic similarities between questions and
produce a strong performance for duplicate detection. Ex-
periments on a range of real-world datasets demonstrate
that our method works very well; in some cases over 30%
improvement compared to state-of-the-art benchmarks. As
a product of one of the proposed features, the association
score feature, we have mined a set of associated phrases
from duplicate questions on Stack Overflow and open the
dataset to the public.

Keywords
Community-based question answering; Latent semantics; As-
sociation rules; Question quality; Classification

c©2017 International World Wide Web Conference Committee (IW3C2),
published under Creative Commons CC BY 4.0 License.
WWW 2017, April 3–7, 2017, Perth, Australia.
ACM 978-1-4503-4913-0/17/04.
http://dx.doi.org/10.1145/3038912.3052701

.

1. INTRODUCTION
Community-based question answering (CQA) sites such as

Quora1, Baidu Zhidao2, and Stack Exchange3 have grown in
popularity in the recent years. CQA sites are a promising al-
ternative to traditional web search as users have queries that
are often subjective, open-ended and require expert opin-
ions. To cater the multitude of interests for its community,
Stack Exchange has a set of sub-domains that focus on a
particular subject or topic.

Stack Overflow, a programming community question an-
swering site (PCQA), is a sub-domain in Stack Exchange
created for programming related questions. Despite detailed
guidelines on posting ethics (and possibly the users’ best
intentions), a large number of created questions are poor
in quality [11]. Duplicate questions — questions that were
previously created and answered — are a frequent occur-
rence even though users are reminded to search the forum
before creating a new post. To reduce the number of dupli-
cate questions, Stack Overflow encourages reputable users
to manually mark duplicate questions. This approach is la-
borious, but more importantly, a large number of duplicate
questions remain undetected. A high quality duplication
detection system will considerably improve user experience:
for inexperienced users creating a new question, it can sug-
gest a related post before posting; for experienced users it
can suggest potential duplicate posts for manual verification.

Question duplication is a pervasive issue in CQA in gen-
eral, and a number of studies have looked into related prob-
lems, including finding similar questions [27, 32, 6, 7], and
generating answers for new questions from past answers [23,
28]. These works framed the task as a classification or pre-
diction task, and relied on a number of extracted features to
train a model. It is important to note, however, that features
explored in these methods may not necessarily suitable to
PCQA as PCQA posts often contain source code from pro-
gramming languages which are linguistically very different
to natural languages.

There are few studies that explored question duplication
for the PCQA domain [1, 31]. The work in [31] tackled du-
plicate question detection on Stack Overflow by generating
features using title, description, topical and tag information

1https://www.quora.com/
2http://zhidao.baidu.com/
3http://stackexchange.com/
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to classify whether a question pair is a duplicate. The work
in [1] improved this method by extending features adopted
from [24] which mined information from Twitter posts. Ad-
ditionally, they conducted extensive analysis to learn why
users create duplicate posts. In this paper, we seek to im-
prove upon the benchmark performance set by their system.

Our methodology follows the same approach from previ-
ous works by framing the duplication detection task as a su-
pervised classification problem. Henceforth we refer to our
system as PCQADup. Given a question pair, PCQADup generates
three types of features. Vector similarity, the first of its fea-
tures, represents questions as continuous vectors in a high-
dimensional space. In the deep learning literature, word2vec
[20] was proposed to learn word vectors/embeddings effi-
ciently from large text corpora, and it has been shown to ef-
fectively capture semantics of words. doc2vec, an extension
of word2vec, is developed to generate embeddings for any ar-
bitrary word sequences [18]. Inspired by the success of these
neural methods, we compute the doc2vec representation of
the title and body content of a post, and measure similarity
between a question pair based on vector cosine similarity
measures. The second type of features is topical similarity,
computed using a topic model for extracting themes from
short texts. The similarity of a question pair is measured
by computing the similarity of topical distributions between
the pair. The last type of features is association score. We
first mine association pairs, i.e., pairs of phrases that co-
occur frequently in known duplicate questions, by adopting
a word alignment method developed in the machine trans-
lation literature. To generate the association score for a
question pair, we train a perceptron that takes association
pairs and lexical features as input. The idea of using associ-
ated phrases has been explored in knowledge base question
answering (KBQA) for ranking generated queries in curated
KBQA [4] or measuring the quality of question paraphrases
in open KBQA [29]. Our work is the first to adapt the idea
to detect duplicate questions in PCQA websites.

To summarise, the main contributions of the paper are:
1) Novel features for duplicate question detection:

We represent questions as continuous vectors in a high di-
mensional space. We show that neural embeddings capture
semantic similarity better compared to traditional vector
space representation such as tf-idf in the task of duplicate
question detection.

2) Association pairs for PCQA: We mine over 130K
association pairs from known duplicate questions in Stack
Overflow. The data contains phrases pairs that frequently
occur in duplicate question pairs and are domain-specific to
PCQA. The source code for mining association pairs and the
mined pairs are publicly available for download4.

3) Extensive experimental evaluation: In addition
to Stack Overflow, we also test PCQADup on other Stack Ex-
change sub-domains. Results suggest that PCQADup outper-
forms state-of-the-art benchmark by over 30% in terms of
recall for duplicate detection.

The rest of paper is organised as follows. In Section 2, we
give a high level perspective of our system PCQADup. In Sec-
tion 3, we describe features we have developed for PCQADup.
We report experimental results in Section 4. In Section 5,
we review related work. Finally, we discuss implications,
caveats and conclude in Section 6.

4http://weiemmazhang.me/codes/pcqadup.html

2. METHODOLOGY OVERVIEW
PCQADup has three components: 1) pre-processing; 2) fea-

ture modelling; and 3) classification. We detail 1) and 3)
here, and leave 2) for Section 3.

2.1 Pre-Processing
We pre-process text and clean the input as the first step.

Text pre-processing is often necessary to standardise token
representation. The pre-processing procedures involve both
general text and programming language-specific processing.

Parsing and cleaning. PCQA posts contain HTML tags,
such as “<font>” and “<a>”. We remove these HTML tags
and retain only textual contents. We also remove posts with
incomplete titles, as they are often not valid posts.

Stop words pruning and tokenisation. We tokenise the
sentences using Stanford Parser and prune stop words5.

Lemmatisation. In natural language text, words exhibit
morphological variations (e.g., singular vs. plural, present
tense vs. past tense). We normalise the variations by lem-
matisation, e.g., converting “inlines” to “inline”.

Symbol mapping. For PCQA, posts often have symbols
such as “$” (dollar) and “{” (brace) as they contain source
code. From preliminary inspection we see questions occa-
sionally use the name of these symbols, e.g., “What is the
purpose of the $ operator in a javascript function declara-
tion?” vs.“Can someone explain the dollar sign in Javascrip-
t?”. As such, we map all symbols used in programming lan-
guages6 to their symbol names (i.e., “$” to “dollar” ). Note
that we only map symbols that are tokenised as a single
token, so e.g., “div[class=]” will not be converted. More-
over, this conversion is performed only on question titles,
as question bodies may contain source code where symbol
conversion might not be sensible.

2.2 Binary Classification
We treat the duplication detection task as a binary clas-

sification problem. Given a pair of questions, the task is to
classify whether they are duplicates or not. The two phases
of classification in our work are described as follows.

Classifier training phase. To train a classifier, we first
extract a set of features from the question pair. Three
types of features are explored: 1) vector similarity; 2) topi-
cal similarity; and 3) association score. Feature generation
is detailed in Section 3. In total, three features are gener-
ated for vector similarity, three feature for topical similarity
and one feature for association score. In terms of classifiers,
we experiment with the following models: decision tree [5],
K-nearest neighbours (K-NN) [2], support vector machines
(SVM) [14], logistic regression [26], random forest [15] and
naive Bayes [9]. In terms of training data, the ratio of non-

5Stanford Parser: http://nlp.stanford.edu/software/
lex-parser.shtml; stop word list: http://snowball.
tartarus.org/algorithms/english/stop.txt.
6Symbols are collected from: https://www.
tutorialspoint.com/computer_programming/computer_
programming_characters.htm; the set of symbols used: {!,
@, #, $, %, ˆ, &, *, (, ), (),+, {, }, {}, >>, .*, }.
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Table 1: Hyper-parameter setting of doc2vec used.
Parameters Values Description
size 100 Dimension of word vectors
window 15 Left/right context window size
min count 1 Minimum frequency threshold

for word types
sample 1e-5 Threshold to down-sample hi-

gh frequency words
negative 5 No. of negative word samples
iter 100 Number of training iterations

duplicate pairs (negative examples) to duplicate pairs (pos-
itive examples) is very skewed. For example, in the Stack
Overflow dump we processed (Section 4.1.1), 716,819 valid
posts are tagged with “java” (case-insensitive), among which
only 28,656 posts are marked as being duplicates (4.0%). To
create a more balanced dataset, we bias the distribution by
under-sampling non-duplicate pairs [1, 28]

Duplicates detection phase. Given a question pair (m,
t), where m is an existing question and t is a newly posted
question, the trained classifier predicts whether they are du-
plicate. To construct these question pairs, we conduct a
naive filtering approach to filter out questions that belong
to a different programming language or technique using tags.
Tags are mandatory inputs when posting a new question on
Stack Overflow, and as such are reliable indicators of the
topic the question belongs to. Specifically, we prune exist-
ing questions that have no common tags with t, thus nar-
rowing the search space for candidate duplicate questions
considerably. We additionally filter out questions that have
no answers. We then generate question pairs for t with all
remainder questions, and compute features for the classifier
to predict the labels.

3. FEATURE MODELLING
We develop three types of features to detect duplicate

questions. These features use both surface textual features
(Section 3.3) and latent features (Section 3.1 and 3.2) from
the questions.

3.1 Vector Similarity
A conventional approach to vectorise text is to compute

tf-idf scores for documents. We use tf-idf vectors to com-
pute cosine similarity for a question pair, and the similarity
serves as a baseline feature.

In the deep learning community, neural methods for learn-
ing word embeddings/vectors have seen plenty of successes
for a range of NLP tasks. word2vec, a seminal work proposed
by [20], is an efficient neural architecture to learn word em-
beddings via negative sampling using large corpora of text.
Paragraph vectors, or doc2vec, was then introduced to ex-
tend word2vec to learn embeddings for word sequences [18].
doc2vec is agnostic to the granularity of the word sequence
— it could learn embeddings for a sentence, paragraph or
document. Two implementations of doc2vec were originally
proposed: dbow and dmpv. The work in [17] evaluated dbow

and dmpv on a range of extrinsic tasks and found that the
simpler dbow trains faster and outperforms dmpv. We there-
fore use the dbow architecture for all experiments involving

Title of target question
tt

Body of target question
bt

Title of master question
tm

Body of master question
bm

cosine

Concatenate of title and body 
of target question  

ct

Concatenate of title and body 
of master question  

cm

Figure 1: Vector Similarity Features

doc2vec in the paper. doc2vec hyper-parameter settings used
in our experiments are detailed in Table 1.

Given target question t (the new question being asked)
and master question m (a previously answered question),
the task is to classify whether t is a duplicate of m. We
generate vectors for the pair’s titles (tm, tt), body contents
(bm, bt) and concatenation of titles and body contents (cm,
ct). We train three doc2vec models, one for each type of
vector.

For cosine similarity computation, we compute it between
(tm, tt), (bm, bt), and (ct, cm), as illustrated in Figure 1.
In total there are three cosine similarity features for each
question pair. Despite its simplicity, these features are very
effective for duplicate classification.

3.2 Topical Similarity
Latent Dirichlet Allocation (lda) is a well-known imple-

mentation of topic model that extracts topics unsupervisedly
from document collections. It posits that each document is a
mixture of a small number of topics and each word’s creation
is attributable to one of the document’s topic. However, lda
does not work well for short texts and as such may not be
directly applicable to PCQA posts. To learn topics for our
dataset, we adopt a modified lda [19], which is designed for
extracting topics from short texts.

The output of the algorithm is two distributions: the
document-topic multinomials and topic-word multinomials.
The former describes the distribution of topics in a docu-
ment; the latter the distribution of words in a topic.

To apply lda, we consider each question as a document.
We learn topic models separately for question titles, body
contents and the concatenation of both.7 The topic distri-
bution for a document learnt by lda constitutes its topical
vector, and to generate a question pair’s topical similarity
feature we compute cosine similarity between their topical
vectors. In total we have three cosine similarity feature val-
ues, one for each topic model.

3.3 Association Score
Manual inspection on duplicate classification using vector

and topical similarity features reveals that these features fail
to capture certain duplicates. For example, the pair “Man-
aging several EditTexts in Android” and “android: how to
elegantly set many button IDs” is not identified as dupli-
cate. One possible reason could be that these features fail
to identify that the phrases“EditTexts”and“button IDs”are
related. This motivates us to look into mining association
pairs — pair of phrases that co-occurs frequently in dupli-
cate pairs — to further improve the performance of PCQADup.

7We use 30 topics for all topic models.
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Table 2: Examples of association pairs mined from
Stack Overflow (A) and WikiAnswers.com (B).

Source Phrase Associated Phrase

A append concatenate
command prompt console
compiled executable exe
java notify java use notifyall

B the primary language official language
a triangular base a triangle base

We adopt the method developed by [4, 29] which use as-
sociation pairs to generate features for knowledge base ques-
tion answering to improve the recall rate. The intuition be-
hind this method is that strong association between elements
in target and master questions suggests a high similarity be-
tween these two questions. A key of strength of the method
is its efficiency: it scales very well with a large amount of
data (in our case we consider tens of thousands of questions
as potential duplicates for each target question). Note that
we use only titles in a question pair to generate association
pairs.

After these mining association pairs, we generate associa-
tion features and lexical features and train a perceptron for
duplicate classification. The aim of the exercise is to learn
weights for these features. Given a new question pair, we
use the trained perceptron to compute the association score
for PCQADup.

3.3.1 Association Pair Mining
We first extract phrases that co-occur frequently in a du-

plicate pair in a PCQA corpus. To this end, we process over
25K duplicate questions on Stack Overflow. These ques-
tions are manually marked as duplicates by reputable users
on Stack Overflow. Note that dataset used for mining asso-
ciation pairs is different to the dataset used for training the
association score perceptron and PCQADup (dataset details in
Section 4.1.1).

For a pair of target question t and master question m,
we learn alignment of words between t and m via machine
translation [21]. The word alignment is performed in each
direction of (m, t) and (t, m) and then combined [16]. Given
the word alignments, we then extract associated phrase pairs
based on 3-gram heuristics developed in [22]. We prune pairs
that occur less than 10 times in the data, and this produces
over 130K association pairs. We henceforth refer to this set
of association pairs as A.

Additionally, we include another complementary set of 1.3
million association pairs [4], denoted as B, mined from 18
million pairs of question paraphrases from WikiAnswers.com.
The rationale for including B is that it covers a wide range
of general phrase pairs that could be relevant to our task.
Table 2 presents examples of some association pairs.

3.3.2 Association Score Computation
Given target question t and master question m, we iterate

through all spans of text st ∈ t and sm ∈ m and check if
they are associated phrases in A. If 〈st, sm〉 ∈ A, we retrieve
its counts from A∪B as the feature value, otherwise it is set
to zero. We also generate lexical features for word pairs in t
and m, checking for example if they share the same lemma,
POS tag or are linked through a derivation link on WordNet

[13, 4]. The full list of lexical and association features is
presented in Table 3.

Take Java related duplicate pairs for example, we gener-
ate over 80K association features in total using 5K randomly
selected duplicate pairs based on Table 3. We then train a
multilayer perceptron with one hidden layer [10] using 5K
duplicates and 5K non-duplicates for duplicate classification.
As mentioned before the dataset used for generating asso-
ciation features is different to the dataset used for training
the perceptron. The aim of the exercise is to learn weights
for the 80K features. The weights learnt by the perceptron
indicate the predictive power of the features. Features with
zero weight are pruned from the feature space. This reduces
the number of features to 16K.

After obtaining weights for the features, we compute a
weighted combination of the features for a given question
pair (the pair is used to evaluate PCQADup) to generate a
score:

score(m, t) =

N∑
i

vfi ∗ θfi , (1)

where N is the number of features with non-zero weights ,
vfi and θfi are the value and weight of feature fi respec-
tively. This score constitutes the association score feature
that feeds into PCQADup.

4. EXPERIMENT
In this section, we provide analyses to answer several ques-

tions: 1) what are the most impactful association features?
2) what is the optimal combination of features for PCQADup?
3) how does PCQADup perform comparing to the state-of-the-
art benchmarks? and 4) how robust is PCQADup — does it
work for other PCQA domains?

4.1 Experimental Setup

4.1.1 Datasets
Our primary evaluation dataset is Stack Overflow. To test

the robustness of PCQADup, we additionally evaluate PCQADup

on other sub-domains of Stack Exchange.

Stack Overflow. The Stack Overflow dataset consists of
28,793,722 questions posted from April 2010 to June 20168.
We prune questions without answers, producing 11,846,518
valid questions, among of which 250,710 pairs of questions
are marked as duplicates. We use all these duplicate pairs
to mine association pairs (described in Section 3.3.1). These
association pairs are used in computing association score fea-
ture for valid posts of all programming languages (described
in Section 3.3.2).

We first focus our evaluation on Java related posts as it
has the highest duplicate ratio in the dataset (Section 4.2.4)
and obtain 28.6K duplicate question pairs with “Java” tag.
As the ratio of non-duplicates to duplicates is very skewed,
we keep all duplicates and randomly sample equal number of
non-duplicates, thereby obtaining 28.6K non-duplicate ques-
tion pairs. Our sample thus has 57.2K question pairs or
114.4K questions.

To train the doc2vec and lda models, we use all Java ques-
tions in our sample (114.4K). We could in theory train these

8https://archive.org/details/stackexchange
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Table 3: Lexical and association features used in computing association score. (m, t) is a pair of questions.
sm, st are spans in m and t respectively.

Lexical features [4, 29].
. lemma(sm) ∧ lemma(st). lemma(w) is the lemmatised word of w. . pos(sm) ∧ pos(st). pos(w) is the POS tag of w.
. lemma(sm) and lemma(st) are synonyms? . lemma(sm) and lemma(st) are WordNet derivations?

Association pair counts as feature. A ∪ B is the set of mined association pairs.
. count of 〈lemma(sm), lemma(st)〉 if 〈lemma(sm), lemma(st)〉 ∈ (A ∪ B), 0 otherwise.

models using the full data (over 11M questions), but did not
do so due to high computation cost.

To create a dataset for the association score experiments,
we randomly sample 5K duplicate pairs to generate associ-
ation pairs, and another 5K duplicate pairs (and 5K non-
duplicate pairs) to train the multilayer perceptron.9

For PCQADup dataset, we use the remainder of 18.6K du-
plicate pairs (and the same number for non-duplicates) that
have not been used. To generate training and test partitions,
we split them in the ratio of 4:1.

In addition to Java, we also run experiments for other
programming languages. We follow the same procedures
as described for dataset generation, except for those with
less than 10K duplicate pairs. For these languages, we split
them in the ratio of 1:1:3 for association pair generation,
multilayer perceptron training and PCQADup evaluation re-
spectively. Training and test partitioning remains the same
(in the ratio of 4:1).

CQADupStack. CQADupStack provides datasets for 12 sub-
forums in Stack Exchange10. We select nine sub-forums that
have texts of syntactic languages. Table 4 gives the total
number of questions and duplicate questions for the selected
sub-forums. As the number of duplicates in these datasets
is small, we generate only vector similarity and topical sim-
ilarity features for the question pairs. We train doc2vec and
lda models using all questions for this series of experiments.
Training and test split follows the same ratio of 4:1.

Table 4: CQADupStack sub-forum statistics.
Sub-forum # of duplicates # of all posts
android 772 23,697
gis 891 38,522
mathematica 865 17,509
programmers 1,020 33,052
stats 670 42,921
tex 3,060 71,090
unix 1,113 48,454
webmasters 529 17,911
wordpress 549 49,146

4.1.2 Evaluation Metrics
We evaluate PCQADup using the following metrics:

• Recall and F1 score. Recall reflects the ability to iden-
tify duplicate pairs among the true duplicate pairs. F1

is the harmonic mean of precision and recall, and is a
measure of accuracy.

9There is no overlap between the two sets of duplicate pairs.
10http://nlp.cis.unimelb.edu.au/resources/
cqadupstack/

Table 5: F1 Score of different learning algorithms.
Learning algorithm F1 Score
Linear SVM with SGD 0.7825
On-line passive aggressive 0.7330
Perceptron with hidden variables 0.8475

• Area under the Receiver Operating Characteristic (ROC)
curve (AUC). ROC curve shows how true positive rate
changes with respect to false positive rate. AUC com-
putes the probability that our model will rank a dupli-
cate higher than a non-duplicate. Higher AUC score
indicates better classification performance.

4.2 Results
We first report the results on association pair mining.

Next we analyse classification performance using three cat-
egories of features independently and various combinations
of them. We experiment PCQADup with several classifiers and
compare it to state-of-the-art systems on a range of datasets.

4.2.1 Association Feature Performance
To generate the association score for question pairs, we

explore three learning algorithms that can asynchronously
learn weights for a large number of features: linear SVM
with stochastic gradient descent learning [30]; online passive
aggressive [12]; and percepton with one hidden layer [10]11.

Table 5 presents the performance of these algorithms in
terms of classification accuracy. Perceptron achieves the
best accuracy (boldface); we thus use the weights learned
by perceptron to generate the association score feature.

0 20 40 60 80 100
Percentage

l_pos=N,r_pos=DT N

l_pos=N,r_pos=N IN

l_pos=IN,r_pos=FW

l_pos=DT,r_pos=FW

l=string,r=java

l_pos=FW,r_pos=DT

l=java,r=a

l=a,r=java

l_pos=DT N,r_pos=N

Identity

Figure 2: Relative importance of top 10 features.

11We use scikit-learn’s implementations for these models:
http://scikit-learn.org/stable/index.html.
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Figure 3: Feature analysis independently.

To give a sense of the learnt features, we list the top-
10 features in Figure 2. In terms of notations, l (left) and
r (right) denote the two entities of a pair. For example,
l pos=DT N, r pos=N is a lexical feature, in which the left
entity has a POS tag of DT N ; and the right entity N.
Identity is another lexical feature, and indicates whether
the entities have the same lemmatised form. l=a, r=java is
an association pair feature, for the phrase pair a and java.

4.2.2 Feature Analyses
We analyse classification performance of PCQADup using

following features: doc2vec vector similarity (VS), topical
similarity (TP) and association score (ASS). We compare
the performances of these features and their combinations
with baseline tf-idf document vectors (VSM). We use ran-
dom forest as the binary classifier in this experiment. Fig-
ure 3 presents the ROC curve and AUC score when these
features are used independently. We see that ASS performs
the best, while VS and TP are slightly worse and VSM has
the lowest performance. The strong performance of ASS
indicates that co-occurring phrase pairs are an important
signal to detect duplicates. The low performance of VSM
shows that the pure frequency-based method is not effective
in short PCQA posts.

Classification recall and F1 score using different combi-
nations of features are summarised in Table 6. As with
the AUC scores, ASS is the most important feature when
used independently. We see that VSM performs substan-
tially worse compared to VS, suggesting that neural em-
beddings are better document representations. The combi-

Table 6: Comparison among different feature com-
binations in PCQADup and VSM

.

Features Recall F1 Score
VSM 0.6570 0.7599

VS 0.7390 0.7845
TP 0.7430 0.7892

ASS 0.7760 0.8251
VS+TP 0.7450 0.8187

ASS+VS 0.8330 0.8695
ASS+TP 0.8490 0.8735

ASS+VS+TP 0.8700 0.9067
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K-Nearest Neighbors, AUC = 0.92
Naive Bayes, AUC = 0.93
Linear SVM, AUC = 0.95
Logistic Regression, AUC = 0.95
Decision Tree, AUC = 0.95
Random Forest, AUC = 0.96

Figure 4: ROC curve on different classifiers on PC-

QADup (ASS+VS+TP)

nation of VS and TP does not outperform ASS by itself,
indicating the strength of ASS. Combining association score
with either vector similarity (ASS+VS) or topical similarity
(ASS+TP) produces similar performance. Encouragingly,
when we combine all features (ASS+VS+TP) it yields the
best performance, achieving over 0.90 in terms of F1.

4.2.3 Classification Algorithms
We measure the classification performance using six clas-

sifiers: decision tree, K-nearest neighbours (K-NN), linear
SVM, logistic regression, random forest and naive Bayes.
The basic parameters used in these classifiers are as follows:
We set the maximum depth of the tree to five and use Gini
impurity to measure the tree split in decision tree. We use
K = 5 for K-nearest neighbours and weight each neighbour-
hood equally. In SVM, we use linear kernel. For logistic re-
gression, we use l2 penalty. In random forest, the number of
trees is set to 10 and the maximum depth of the tree is five.
For naive Bayes we use a Gaussian naive Bayes classifier.

Figure 4 presents the ROC curves and AUC scores. From
the figure, we can see that our features perform very well
with all six classifiers with minor differences. K-NN and
naive Bayes are only marginally worse than decision tree,
SVM and logistic regression in terms of AUC scores, and
random forest has the best performance.

Table 7 presents recall and F1 score performance for the
classifiers. Here we see that random forest has the best
performance in both recall and F1 score. Logistic regression
gives the second best recall, followed by decision tree, linear
SVM and naive Bayes. K-nearest neighbours performs worst
over the two metrics.

Table 7: Comparison among different classifiers on
PCQADup (ASS+VS+TP)

Features Recall F1 score
K-Nearest Neighbors 0.7590 0.8272

Naive Bayes 0.7700 0.8397
Linear SVM 0.8210 0.8725

Logistic Regression 0.8340 0.8747
Decision Tree 0.8280 0.8870

Random Forest 0.8720 0.9013
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Figure 5: Duplicate distribution of different pro-
gramming languages (top-22 ranked by ratio.)

The strong performance of random forest is consistent
with other findings in the literature [8]. As random forest
is an ensemble learning method that constructs a number of
decision trees, it is not surprise that it outperforms single-
method classifiers.

For K-NN, it assumes each feature has equal importance
and its poor performance could be due to this (likely incor-
rect) assumption for our task. In light of these results, we
use random forest as the classifier for all remaining experi-
ments.

4.2.4 Other Programming Languages
We collected some duplicate statistics for 22 most popu-

lar programming languages on Stack Overflow. To aggregate
different versions of a particular language, we collapse tags
of different versions into one tag, e.g., “html” and “html5”
tags are collapsed into “html”. Figure 5 illustrates the ra-
tio of duplicates to non-duplicates for these programming
languages, and Java has the highest ratio of duplicates.

We compare PCQADup to state-of-the-art DupPredictor [31]
and Dupe [1] on PCQA duplicate detection over seven pro-
gramming languages. Performance values of DupPredictor

and Dupe are taken from [1].12 Figure 6 presents results over
duplicate classification recall rate. For all seven languages,
PCQADup outperforms DupPredictor and Dupe by at least 11%
(Ruby). The biggest improvement is on C++, where the
gain is over 35%. The significant gap in terms of perfor-
mance highlight the strength of PCQADup.

4.2.5 Performance on CQADupStack
As the dataset is much smaller compared to Stack Over-

flow, we use only the VS and TP features and do not gen-
erate the association pair features. For comparison, we use
the unsupervised baseline proposed in [17], which uses one
feature: cosine similarity between ct and cm vectors.

Figure 7 shows the performance of PCQADup on nine se-
lected sub-forums in CQADupStack over AUC score. We
compare two settings of PCQADup: using only VS feature, and

12Technically, the datasets used by PCQADup and DupPredictor

and Dupe are not exactly the same. To maximise compa-
rability, we use the duplicate pairs of [1] and sample non-
duplicate pairs randomly (these were not specified in the
paper).
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Figure 6: Comparison to the state-of-the-art sys-
tems.

using both VS and TP features. Note that VS is very simi-
lar to the baseline, except that it has two more features: (tt,
tm) and (bt, bm) cosine similarities.

From the figure, we can see that the performance of PC-

QADup is close to the baseline feature. The close gap between
the baseline and PCQADup (VS) implies the addition of (tt, tm)
and (bt, bm) similarity feature has little impact to the clas-
sifier. Adding topical feature (PCQADup (VS+TP)) also does
not add much to the model in most cases except for the an-
droid and mathematica sub-forums. One possible reason for
the ineffectiveness of TP and the addition (tt, tm) and (bt,
bm) similarity features in VS is that there are very limited
number of duplicate posts in CQADupStack datasets, hence
it is hard to learn topics and learn document embeddings.

5. RELATED WORK
Our work is related to previous studies in two fields: 1)

question retrieval from QA communities; and 2) Mining
PCQA websites.

Question retrieval from QA communities. Large com-
munity question-answering data enabled studies to automat-
ically retrieve response of existing questions to answer newly
issued questions [6, 7, 23, 27, 28, 32]. Cao et al. [6, 7]
explored category information in Yahoo! Answers and com-
bined a language model with a translation model to estimate
the relevance of existing question-answer pairs to a query
question. Shtok et al. [23] treated the question-answering
task as a similarity identification problem, and retrieved
questions that have similar titles as candidates. Wang et
al. [27] identified similar questions by assessing the similar-
ity of their syntactic parse trees. Yang et al. [28] classified
questions based on heuristics and topical information to pre-
dict whether they will be answered. Zhou et al. [32] studied
synonymy and polysemy to measure question similarity and
built a concept thesaurus from Wikipedia for the task. A key
difference of our work from these is that we are interested
in identifying duplicates specifically for the PCQA domain.

Mining PCQA websites. There has been plenty of re-
search dedicated to mining information from PCQA to as-
sist software development [1, 3, 11, 25, 31]. Ahasanuzza-
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Figure 7: Performance of PCQADup on CQADupStack datasets

man et al. [1] conducted an extensive analysis to under-
stand why duplicate questions are created on Stack Over-
flow, and trained a binary classification model on question
pairs to identify duplicate questions. Their work adopted
features from [24] that mine duplicates from Twitter posts
using textual and semantic features. Prior to [1], Zhang et
al. [31] proposed to classify duplicate questions using title,
description, topic and tag similarity as features. It was one
of the first studies on duplicate detection in the PCQA do-
main. To better understand traits and behaviours of Stack
Overflow users, Bazelli et al. [3] experimented with a linguis-
tic inquiry and word count tool to analyse text written by
users to predict their personalities and categorise them into
several groups. Treude et al. [25] analysed the types of ques-
tions posted on Stack Overflow and examined which kind of
questions are well answered and which ones are unanswered.
Correa et al. [11] studied the characteristics of deleted ques-
tions on Stack Overflow to predict the deletion of a newly
issued question.

6. DISCUSSION AND CONCLUSION
We introduce PCQADup, a new state-of-the-art duplicate de-

tection system for the PCQA domain. PCQADup is driven by a
few features, derived using methods from the deep learning
and machine learning literature. Combining all features in
a classification model, PCQADup outperforms state-of-the-art
duplicate detection systems by over 30% in multiple pro-
gramming languages.

As a product of the association score feature, we have
mined a set of associated phrases from duplicate questions
on Stack Overflow. These phrases are domain-specific to
PCQA, and could be used in other tasks such as keyword
recommendation for forum searching.

Despite the strong performance of PCQADup, there is room
for improvement. We present some cases (and their rea-
sons) where PCQADup did not detect them as duplicates in
Table 8. For example, Q1 asks for solution for a specific
problem “causes of java.lang.NoSuchMethodError”. How-
ever, question issuer for Q2 has problem related to “java.
lang.NoSuchMethodError” but does not phrase explicitly in
the question. Q3 is phrased in a very specific manner, and
has little word overlap with Q4. Q6 asks for functions in
JQuery that is similar to “isset” in PHP which crosses the
programming language boundary. We leave the development
of techniques that tackle cross-language duplicate detection
for future work.

Besides, the performance of association score feature and
topical similarity feature can be further improved if we mine

Table 8: Examples of duplicate detection exceptions

Q1 Causes of ’java.lang.NoSuchMethodError’
Q2 How should a minimal Java program look like?
Reason: Implicit expression
Q3 What does (function (x,y)...)(a,b); mean in Ja-

vaScript?
Q4 javascript syntax explanation
Reason: Difficult paraphrases
Q5 Finding whether the element exists in whole ht-

ml page
Q6 isset in Jquery?
Reason: Cross-language duplicates

association pairs for different programming languages sepa-
rately and we learn topics from all the posts instead of only
duplicate and equal number of non-duplicate questions. We
leave these improvements as future work.
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